Interpretation of caesium-137 profiles in lacustrine and other sediments: the role of catchment-derived inputs

[1]  D. Walling,et al.  The particle size characteristics of fluvial suspended sediment: an overview , 1989, Hydrobiologia.

[2]  D. Walling,et al.  Rates and patterns of contemporary floodplain sedimentation: A case study of the river Culm, Devon, UK , 1989, GeoJournal.

[3]  D. Walling,et al.  Some applications of caesium-137 measurements in the study of erosion, transport and deposition. , 1989 .

[4]  F. Livens,et al.  Physico‐chemical controls on artificial radionuclides in soil , 1988 .

[5]  L. Lijklema,et al.  Methods of computing sedimentation in lakes and reservoirs: Stevan bruk (Rapporteur). Unesco, Paris, 1985, 224 pp , 1987 .

[6]  John N. Smith,et al.  Time-dependent modeling of fallout radionuclide transport in a drainage basin: significance of slow erosional and fast hydrological components , 1987 .

[7]  J. Dominik,et al.  Transport of the environmental radionuclides in an alpine watershed , 1987 .

[8]  M. Heit,et al.  A time resolution methodology for assessing the quality of lake sediment cores that are dated by 137Cs , 1986 .

[9]  J. Robbins The coupled lakes model for estimating the long-term response of the Great Lakes to time-dependent loadings of particle-associated contaminants , 1985 .

[10]  G. Matisoff,et al.  137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates , 1984 .

[11]  E. Sholkovitz,et al.  The pore water chemistry of 239,240Pu and 137Cs in sediments of Buzzards Bay, Massachusetts , 1984 .

[12]  S. Norton,et al.  137Cs and 210Pb dating of sediments from soft-water lakes in New England (U.S.A.) and Scandinavia, a failure of 137Cs dating , 1984 .

[13]  T. Peng,et al.  Fayetteville Green Lake, New York, U.S.A.: VIII. Mass balance for 137Cs in water, varved and non-varved sediments , 1984 .

[14]  K. Bunzl,et al.  The Migration of 137 Cs and 90 Sr in Multilayered Soils: Results from Batch, Column, and Fallout Investigations , 1982 .

[15]  J. N. Smith,et al.  Transport mechanism for Pb-210, Cs-137 and Pu fallout radionuclides through fluvial-marine systems , 1982 .

[16]  T. Peng,et al.  Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments , 1981 .

[17]  Donald A. Davidson,et al.  Timescales in Geomorphology , 1981 .

[18]  P. Krey,et al.  Nevada Test Site fallout in the area of Enterprise, Utah , 1980 .

[19]  D. Livingstone,et al.  Confirmation of 137Cs dating by algal stratigraphy in Rostherne Mere , 1978, Nature.

[20]  R. Delaune,et al.  Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh , 1978, Nature.

[21]  Abraham Lerman,et al.  Lakes--chemistry, geology, physics , 1978 .

[22]  S. Mozley,et al.  Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit-feeding organisms , 1977 .

[23]  J. Robbins,et al.  DETERMINATION OF RECENT SEDIMENTATION RATES IN LAKE MICHIGAN USING PB – 210 AND CS – 137 , 1975 .

[24]  R. G. Menzel Land Surface Erosion and Rainfall as Sources of Strontium-90 in Streams 1 , 1974 .

[25]  C Ritchie Jerry,et al.  DATING RECENT RESERVOIR SEDIMENTS1 , 1973 .

[26]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .