Full Pixel Matching between Images for Non-linear Registration of Objects

A two-dimensional continuous dynamic programming (2DCDP) method is proposed for two-dimensional (2D) spotting recognition of images. Spotting recognition is the simultaneous segmentation and recognition of an image by optimal pixel matching between a reference image and an input image. The proposed method performs optimal pixel-wise image matching and 2D pixel alignment, which are not available in conventional algorithms. Experimental results show that 2DCDP precisely matches the pixels of nonlinearly deformed images.

[1]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[3]  Margrit Gelautz,et al.  Relief reconstruction from SAR stereo pairs: the "optimal gradient" matching method , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[5]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[7]  Seiichi Uchida,et al.  Handwritten character recognition using monotonic and continuous two-dimensional warping , 1999, Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318).

[8]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Seiichi Uchida,et al.  Piecewise linear two-dimensional warping , 1999, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[10]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[11]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[12]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[13]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Keitaro Naruse,et al.  Speech and Song Search on the Web: System Design and Implementation , 2007, 7th IEEE International Conference on Computer and Information Technology (CIT 2007).

[15]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[16]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[17]  Aaron E. Rosenberg,et al.  Performance tradeoffs in dynamic time warping algorithms for isolated word recognition , 1980 .

[18]  Mubarak Shah,et al.  Two-frame wide baseline matching , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Seiichi Uchida,et al.  Piecewise linear two-dimensional warping , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[20]  Sarang Dharmapurikar,et al.  Implementation results of bloom filters for string matching , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[21]  Takeo Kanade,et al.  A Multiple-Baseline Stereo , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[23]  Juho Kannala,et al.  Quasi-Dense Wide Baseline Matching Using Match Propagation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Uchida Seiichi DP Matching -- Fundamentals and Applications , 2006 .

[25]  Ryuichi Oka Spotting Method for Classification of Real World Data , 1998, Comput. J..

[26]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[27]  Thierry Pun,et al.  Robust template matching for affine resistant image watermarks , 2000, IEEE Trans. Image Process..

[28]  Tadashi Kitamura,et al.  Development of a diagnostic supporting tool for a circulatory system model of living body , 2001, Systems and Computers in Japan.