Parallel-in-Time High-Order Multiderivative IMEX Solvers

In this work, we present a novel class of parallelizable high-order time integration schemes for the approximate solution of additive ODEs. The methods achieve high order through a combination of a suitable quadrature formula involving multiple derivatives of the ODE’s right-hand side and a predictor-corrector ansatz. The latter approach is designed in such a way that parallelism in time is made possible. We present thorough analysis as well as numerical results that showcase scaling opportunities of methods from this class of solvers.

[1]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[2]  D. D. Stancu,et al.  Quadrature Formulas with Multiple Gaussian Nodes , 1965 .

[3]  Colin B. Macdonald,et al.  Revisionist integral deferred correction with adaptive step-size control , 2013, 1310.6331.

[4]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[5]  Dajana Conte,et al.  Implementation of second derivative general linear methods , 2020, Calcolo.

[6]  Alexander Jaust,et al.  Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations , 2017, Journal of Scientific Computing.

[7]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[9]  B. Ong,et al.  Applications of time parallelization , 2020, Computing and Visualization in Science.

[10]  Antonio Baeza,et al.  An Approximate Lax–Wendroff-Type Procedure for High Order Accurate Schemes for Hyperbolic Conservation Laws , 2017, J. Sci. Comput..

[11]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[12]  John C. Butcher,et al.  On the Convergence of Numerical Solutions to Ordinary Differential Equations , 1966 .

[13]  Andrew J. Christlieb,et al.  Low-Storage Integral Deferred Correction Methods for Scientific Computing , 2018, SIAM J. Sci. Comput..

[14]  W. Miranker,et al.  Parallel methods for the numerical integration of ordinary differential equations , 1967 .

[15]  Benjamin W. Ong,et al.  Deferred Correction Methods for Ordinary Differential Equations , 2020, J. Sci. Comput..

[16]  Gholamreza Hojjati,et al.  Implicit–explicit second derivative diagonally implicit multistage integration methods , 2020, Computational and Applied Mathematics.

[17]  Tao Xiong,et al.  A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system , 2019, J. Comput. Phys..

[18]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[19]  Turgut Özis,et al.  Derivation of three-derivative Runge-Kutta methods , 2016, Numerical Algorithms.

[20]  R. I. Okuonghae,et al.  A Class of Two-Derivative Two-Step Runge-Kutta Methods for Non-Stiff ODEs , 2019, J. Appl. Math..

[21]  Gerhard Wanner,et al.  On Turan type implicit Runge-Kutta methods , 1972, Computing.

[22]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[23]  Jochen Schütz,et al.  A new stable splitting for singularly perturbed ODEs , 2016 .

[24]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[25]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[26]  Sebastiano Boscarino,et al.  On an accurate third order implicit-explicit Runge--Kutta method for stiff problems , 2009 .

[27]  Alexander J. Dittmann High-Order Multiderivative IMEX Schemes , 2020, ArXiv.

[28]  David C. Seal,et al.  On the convergence of spectral deferred correction methods , 2017, Communications in Applied Mathematics and Computational Science.

[29]  Andrew J. Christlieb,et al.  High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws , 2013, J. Sci. Comput..

[30]  Jochen Schütz,et al.  An asymptotic preserving semi-implicit multiderivative solver , 2020, Applied Numerical Mathematics.

[31]  Lorenzo Pareschi,et al.  On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws , 2017, J. Comput. Appl. Math..

[32]  Sebastian Noelle,et al.  IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows , 2014 .

[33]  Zachary Grant,et al.  Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes , 2015, J. Sci. Comput..

[34]  Robert P. K. Chan,et al.  On explicit two-derivative Runge-Kutta methods , 2010, Numerical Algorithms.

[35]  Antonio Baeza,et al.  Reprint of: Approximate Taylor methods for ODEs , 2018, Computers & Fluids.

[36]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[37]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[38]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[39]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[40]  Alexander Jaust,et al.  Implicit Multistage Two-Derivative Discontinuous Galerkin Schemes for Viscous Conservation Laws , 2015, J. Sci. Comput..

[41]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[42]  Klaus Kaiser,et al.  A Novel Full-Euler Low Mach Number IMEX Splitting , 2020 .

[43]  Andrew J. Christlieb,et al.  Implicit Parallel Time Integrators , 2011, J. Sci. Comput..

[44]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .