Essex Finance Centre Working Paper Series Working Paper No 14 : 12-2016 “ Adaptive Minnesota Prior for High-Dimensional Vector Autoregressions ” “

This paper proposes a simulation-free estimation algorithm for vector autoregressions (VARs) that allows fast approximate calculation of marginal parameter posterior distributions. We apply the algorithm to derive analytical expressions for independent VAR priors that admit a hierarchical representation and which would typically require computationally intensive posterior simulation methods. The bene fits of the new algorithm are explored using three quantitative exercises. First, a Monte Carlo experiment illustrates the accuracy and computational gains of the proposed estimation algorithm and priors. Second, a forecasting exercise involving VARs estimated on macroeconomic data demonstrates the ability of hierarchical shrinkage priors to find useful parsimonious representations. We also show how our approach can be used for structural analysis and that it can successfully replicate important features of news-driven business cycles predicted by a large-scale theoretical model.

[1]  Frank Schorfheide,et al.  Priors from General Equilibrium Models for Vars , 2002 .

[2]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[3]  K. R. Kadiyala,et al.  Numerical Methods for Estimation and Inference in Bayesian VAR-models , 1997 .

[4]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[5]  Dimitrios Korompilis Magkas VAR Forecasting Using Bayesian Variable Selection , 2011 .

[6]  B. Mallick VARIABLE SELECTION FOR REGRESSION MODELS , 2016 .

[7]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[8]  Luca Gambetti,et al.  Sufficient information in structural VARs , 2014 .

[9]  G. Kapetanios,et al.  Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models , 2009 .

[10]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[11]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[12]  Robert B. Litterman Techniques of forecasting using vector autoregressions , 1979 .

[13]  David B. Dunson,et al.  Quantifying uncertainty in variable selection with arbitrary matrices , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[14]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[15]  G. Koop,et al.  Bayesian Compressed Vector Autoregressions , 2017, Journal of Econometrics.

[16]  Per Krusell,et al.  News Shocks and Business Cycles , 2010 .

[17]  G. Kapetanios,et al.  Forecasting Government Bond Yields with Large Bayesian Vars , 2010 .

[18]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[19]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[20]  Francesco Zanetti,et al.  News Shocks Under Financial Frictions , 2016, SSRN Electronic Journal.

[21]  J. Tsoukalas,et al.  News and Financial Intermediation in Aggregate Fluctuations , 2017, Review of Economics and Statistics.

[22]  Luca Gambetti,et al.  No News in Business Cycles , 2014 .

[23]  Dimitris Korobilis,et al.  Large Time-Varying Parameter VARs , 2012 .

[24]  R. Frisch,et al.  Partial Time Regressions as Compared with Individual Trends , 1933 .

[25]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[26]  Chris Bloor,et al.  DP2008/Preliminary Draft Real-time conditional forecasts with Bayesian VARs: An application to New Zealand , 2008 .

[27]  Giorgio E. Primiceri,et al.  Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[28]  Michele Lenza,et al.  Prior Selection for Vector Autoregressions , 2012, Review of Economics and Statistics.

[29]  P. Beaudry,et al.  When is Nonfundamentalness in Vars a Real Problem? an Application to News Shocks , 2015 .

[30]  G. Koop Forecasting with Medium and Large Bayesian VARs , 2013 .

[31]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[32]  P. Beaudry,et al.  News Driven Business Cycles: Insights and Challenges , 2013 .

[33]  C. Sims A nine variable probabilistic macroeconomic forecasting model , 1993 .

[34]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[35]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[36]  Todd E. Clark,et al.  Advances in Forecast Evaluation , 2011 .

[37]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[38]  Peter Christoffersen,et al.  Working Papers Working Papers Working Papers Working Papers Cointegration and Long-horizon Forecasting Cointegration and Long-horizon Forecasting , 2022 .

[39]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[40]  G. Kapetanios,et al.  Forecasting Exchange Rates with a Large Bayesian VAR , 2008 .

[41]  Jerry A. Hausman,et al.  Specification and estimation of simultaneous equation models , 1983 .

[42]  G. Koop,et al.  Bayesian Multivariate Time Series Methods for Empirical Macroeconomics , 2009 .

[43]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[44]  Todd E. Clark,et al.  Large Vector Autoregressions with Stochastic Volatility and Flexible Priors , 2016 .

[45]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[46]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[48]  Michael T. Owyang,et al.  A Flexible Finite-Horizon Alternative to Long-Run Restrictions with an Application to Technology Shocks , 2010, Review of Economics and Statistics.