IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation.

[1]  S. Henikoff,et al.  Targeted in situ genome-wide profiling with high efficiency for low cell numbers , 2018, Nature Protocols.

[2]  C. Benoist,et al.  Different molecular complexes that mediate transcriptional induction and repression by FoxP3 , 2017, Nature Immunology.

[3]  Michael R. Green,et al.  An Embryonic Stem Cell-Specific NuRD Complex Functions through Interaction with WDR5 , 2017, Stem cell reports.

[4]  Sun Mi Park,et al.  Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells , 2017, Nature Genetics.

[5]  C. Mullighan,et al.  Genetic Basis of Acute Lymphoblastic Leukemia. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  Steven Henikoff,et al.  An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites , 2016, bioRxiv.

[7]  W. Liu,et al.  Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia , 2016, PloS one.

[8]  C. Leslie,et al.  Memory of Inflammation in Regulatory T Cells , 2016, Cell.

[9]  CT Collins,et al.  Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets , 2016, Oncogene.

[10]  S. Armstrong,et al.  Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. , 2015, Cell stem cell.

[11]  T. Holderried,et al.  Stable inhibitory activity of regulatory T cells requires the transcription factor Helios , 2015, Science.

[12]  Christina S. Leslie,et al.  Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation , 2015, Nature Genetics.

[13]  G. Hardiman,et al.  Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia. , 2015, Cell stem cell.

[14]  Michael G. Kharas,et al.  Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. , 2015, The Journal of clinical investigation.

[15]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[16]  S. Carr,et al.  Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells , 2014, Science.

[17]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[18]  S. Ogawa,et al.  Adult T‐cell leukemia cells are characterized by abnormalities of Helios expression that promote T cell growth , 2013, Cancer science.

[19]  P. Witkowski,et al.  FoxP3, Helios, and SATB1: roles and relationships in regulatory T cells. , 2013, International immunopharmacology.

[20]  B. Bernstein,et al.  Epigenetic Reprogramming in Cancer , 2013, Science.

[21]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[22]  James B. Brown,et al.  Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation , 2011, Proceedings of the National Academy of Sciences.

[23]  A. Melnick,et al.  The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation , 2011, Science.

[24]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[25]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[26]  Y. Belkaid,et al.  Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells , 2010, The Journal of Immunology.

[27]  I. Weissman,et al.  Evaluation of the Long‐Term Reconstituting Subset of Hematopoietic Stem Cells with CD150 , 2009, Stem cells.

[28]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[29]  Robert Gentleman,et al.  rtracklayer: an R package for interfacing with genome browsers , 2009, Bioinform..

[30]  Richard A Young,et al.  Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. , 2008, Genes & development.

[31]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[32]  Edgar Wingender,et al.  The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation , 2008, Briefings Bioinform..

[33]  E. Passegué,et al.  MicroRNA-126 Regulates HOXA9 by Binding to the Homeobox , 2008, Molecular and Cellular Biology.

[34]  Satoshi Tanaka,et al.  Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region , 2007, Nature Biotechnology.

[35]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[36]  S. Smale,et al.  Predominant Interaction of Both Ikaros and Helios with the NuRD Complex in Immature Thymocytes* , 2007, Journal of Biological Chemistry.

[37]  J. Downing,et al.  Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias , 2007, Leukemia.

[38]  J. Bates,et al.  Expression of a non-DNA-binding isoform of Helios induces T-cell lymphoma in mice. , 2007, Blood.

[39]  M. Tanimoto,et al.  Characterization of the short isoform of Helios overexpressed in patients with T‐cell malignancies , 2007, Cancer science.

[40]  M. Cleary,et al.  PU.1 and Junb: suppressing the formation of acute myeloid leukemia stem cells. , 2006, Cancer cell.

[41]  Hartmut Döhner,et al.  Acute myeloid leukaemia , 2006, The Lancet.

[42]  M. Noble,et al.  Cancer stem cells. , 2006, The New England journal of medicine.

[43]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[46]  Y. Honma,et al.  Induction of CCAAT/enhancer binding protein‐δ by cytokinins, but not by retinoic acid, during granulocytic differentiation of human myeloid leukaemia cells , 2005, British journal of haematology.

[47]  J. Hess MLL: a histone methyltransferase disrupted in leukemia. , 2004, Trends in molecular medicine.

[48]  S. Korsmeyer,et al.  Definitive hematopoiesis requires the mixed-lineage leukemia gene. , 2004, Developmental cell.

[49]  A. Rebollo,et al.  Ikaros, Aiolos and Helios: Transcription regulators and lymphoid malignancies , 2003, Immunology and cell biology.

[50]  D. Ramji,et al.  CCAAT/enhancer-binding proteins: structure, function and regulation. , 2002, The Biochemical journal.

[51]  Barbara Hoffman,et al.  The proto-oncogene c-myc in hematopoietic development and leukemogenesis , 2002, Oncogene.

[52]  M. Manns,et al.  Autoregulation enables different pathways to control CCAAT/enhancer binding protein β (C/EBPβ) transcription , 2001 .

[53]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[54]  M. Krzywinski,et al.  New insights to the MLL recombinome of acute leukemias , 2009, Leukemia.

[55]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..