Rapid Trajectory optimization Using C-FROST with Illustration on a Cassie-Series Dynamic Walking Biped

One of the big attractions of low-dimensional models for gait design has been the ability to compute solutions rapidly, whereas one of their drawbacks has been the difficulty in mapping the solutions back to the target robot. This paper presents a set of tools for rapidly determining solutions for “humanoids” without removing or lumping degrees of freedom. The main tools are: (1) C-FROST, an open-source C++ interface for FROST, a direct collocation optimization tool; and (2) multi-threading. The results will be illustrated on a 20-DoF floating-base model for a Cassie-series bipedal robot through numerical optimization and physical experiments.

[1]  Jessy W. Grizzle,et al.  From 2D Design of Underactuated Bipedal Gaits to 3D Implementation: Walking With Speed Tracking , 2016, IEEE Access.

[2]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[3]  Huei Peng,et al.  Synthesis of safe controller via supervised learning for truck lateral control , 2017, ArXiv.

[4]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[5]  Aaron D. Ames,et al.  Direct Collocation for Dynamic Behaviors With Nonprehensile Contacts: Application to Flipping Burgers , 2018, IEEE Robotics and Automation Letters.

[6]  A Yongga,et al.  Dynamic humanoid locomotion: Hybrid zero dynamics based gait optimization via direct collocation methods , 2016 .

[7]  Koushil Sreenath,et al.  Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking , 2018, IEEE Control Systems.

[8]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[9]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[10]  Xingye Da,et al.  Combining trajectory optimization, supervised machine learning, and model structure for mitigating the curse of dimensionality in the control of bipedal robots , 2017, Int. J. Robotics Res..

[11]  Aaron D. Ames,et al.  FROST∗: Fast robot optimization and simulation toolkit , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Christine Chevallereau,et al.  Models, feedback control, and open problems of 3D bipedal robotic walking , 2014, Autom..

[13]  Alexander Herzog,et al.  Trajectory generation for multi-contact momentum control , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[14]  Aaron D. Ames,et al.  Algorithmic Foundations of Realizing Multi-Contact Locomotion on the Humanoid Robot DURUS , 2016, WAFR.

[15]  WächterAndreas,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006 .

[16]  Aaron D. Ames,et al.  Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Olivier Stasse,et al.  A versatile and efficient pattern generator for generalized legged locomotion , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[19]  Russ Tedrake,et al.  Whole-body motion planning with centroidal dynamics and full kinematics , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[20]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[21]  Shuuji Kajita,et al.  Dynamic walking control of a biped robot along a potential energy conserving orbit , 1992, IEEE Trans. Robotics Autom..

[22]  Jerry Pratt,et al.  Velocity-Based Stability Margins for Fast Bipedal Walking , 2006 .

[23]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[24]  Huei Peng,et al.  Enhancing the Performance of a Safe Controller Via Supervised Learning for Truck Lateral Control , 2017, Journal of Dynamic Systems, Measurement, and Control.

[25]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[26]  Jessy W. Grizzle,et al.  Design of asymptotically stable walking for a 5-link planar biped walker via optimization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[28]  Aaron D. Ames,et al.  Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization , 2018, IEEE Transactions on Robotics.

[29]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[30]  Jessy W. Grizzle,et al.  Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway , 2018, 2019 American Control Conference (ACC).

[31]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[32]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid , 2012, Int. J. Robotics Res..