PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane

[1]  M. Jackson,et al.  Mutations in the Effector Binding Loops in the C2A and C2B Domains of Synaptotagmin I Disrupt Exocytosis in a Nonadditive Manner* , 2003, Journal of Biological Chemistry.

[2]  E. Chapman,et al.  Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells , 2003, The Journal of cell biology.

[3]  J. Rizo Faculty Opinions recommendation of The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. , 2003 .

[4]  E. Chapman,et al.  Visualization of synaptotagmin I oligomers assembled onto lipid monolayers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[6]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[7]  Jodi Gureasko,et al.  Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I , 2002, The Journal of cell biology.

[8]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[9]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[10]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[11]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[12]  Ping Wang,et al.  C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Diana Murray,et al.  PIP(2) and proteins: interactions, organization, and information flow. , 2002, Annual review of biophysics and biomolecular structure.

[14]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[15]  M. Jackson,et al.  Synaptotagmin Modulation of Fusion Pore Kinetics in Regulated Exocytosis of Dense-Core Vesicles , 2001, Science.

[16]  Ping Wang,et al.  The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis , 2001, The Journal of cell biology.

[17]  M. Craxton Genomic analysis of synaptotagmin genes. , 2001, Genomics.

[18]  Kristina D. Micheva,et al.  Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity , 2001, The Journal of cell biology.

[19]  N. Reist,et al.  Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions , 2001, The Journal of comparative neurology.

[20]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[21]  T. Südhof,et al.  The C2B domain of synaptotagmin I is a Ca2+-binding module. , 2001, Biochemistry.

[22]  P. De Camilli,et al.  Phosphoinositides in membrane traffic at the synapse. , 2001, Journal of cell science.

[23]  S. D. Carlson,et al.  synaptotagmin Mutants Reveal Essential Functions for the C2B Domain in Ca2+-Triggered Fusion and Recycling of Synaptic Vesicles In Vivo , 2001, The Journal of Neuroscience.

[24]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[25]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[26]  J. Littleton,et al.  The C2b Domain of Synaptotagmin Is a Ca2+–Sensing Module Essential for Exocytosis , 2000, The Journal of cell biology.

[27]  E. Chapman,et al.  Membrane-embedded Synaptotagmin Penetrates cis ortrans Target Membranes and Clusters via a Novel Mechanism* , 2000, The Journal of Biological Chemistry.

[28]  G. Prestwich,et al.  A Pleckstrin Homology Domain Specific for Phosphatidylinositol 4,5-Bisphosphate (PtdIns-4,5-P2) and Fused to Green Fluorescent Protein Identifies Plasma Membrane PtdIns-4,5-P2 as Being Important in Exocytosis* , 2000, The Journal of Biological Chemistry.

[29]  R. Tsien,et al.  Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’ , 2000, Nature Neuroscience.

[30]  D. Fasshauer,et al.  Kinetics of Synaptotagmin Responses to Ca2+ and Assembly with the Core SNARE Complex onto Membranes , 1999, Neuron.

[31]  R. Nicoll,et al.  Rabphilin Knock-Out Mice Reveal That Rabphilin Is Not Required for Rab3 Function in Regulating Neurotransmitter Release , 1999, The Journal of Neuroscience.

[32]  Sejal M. Patel,et al.  SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion , 1999, Cell.

[33]  T. Südhof,et al.  Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? , 1998, Biochemistry.

[34]  T. Südhof,et al.  Newly Synthesized Phosphatidylinositol Phosphates Are Required for Synaptic Norepinephrine but Not Glutamate or γ-Aminobutyric Acid (GABA) Release* , 1998, The Journal of Biological Chemistry.

[35]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[36]  T. Sihra,et al.  An Essential Role for a Small Synaptic Vesicle-Associated Phosphatidylinositol 4-Kinase in Neurotransmitter Release , 1998, The Journal of Neuroscience.

[37]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[38]  G. Prestwich,et al.  The C2 Domains of Rabphilin3A Specifically Bind Phosphatidylinositol 4,5-Bisphosphate Containing Vesicles in a Ca2+-dependent Manner , 1998, The Journal of Biological Chemistry.

[39]  G. Prestwich,et al.  Specific Binding of Phosphatidylinositol 4,5-Bisphosphate to Calcium-dependent Activator Protein for Secretion (CAPS), a Potential Phosphoinositide Effector Protein for Regulated Exocytosis* , 1998, The Journal of Biological Chemistry.

[40]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[41]  T. Sasaki,et al.  Rabphilin-3A: A Multifunctional Regulator of Synaptic Vesicle Traffic , 1998, The Journal of general physiology.

[42]  K. Mikoshiba,et al.  Functional diversity of C2 domains of synaptotagmin family , 1995, Neuroscience Research.

[43]  K. Mikoshiba,et al.  104 Functional diversity of C2 domains of synaptotagmin family , 1997, Neuroscience Research.

[44]  J. Rothman,et al.  Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Llinás,et al.  Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[47]  T. Takenawa,et al.  ATP-dependent inositide phosphorylation required for Ca2+-activated secretion , 1995, Nature.

[48]  R. Jahn,et al.  Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. , 1994, The Journal of biological chemistry.

[49]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[50]  J. Hay,et al.  Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion , 1993, Nature.

[51]  G. Augustine,et al.  Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis , 1993, Nature.

[52]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[53]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[54]  D. Eberhard,et al.  Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. , 1990, The Biochemical journal.

[55]  R. Scheller,et al.  Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. , 1989, The Journal of biological chemistry.

[56]  B. Katz The release of neural transmitter substances , 1969 .

[57]  J. Rizo,et al.  Accelerated Publications The C 2 B Domain of Synaptotagmin I Is a Ca 2 +-Binding Module † , 2022 .