Determining and Evaluating the Hydrological Signal in Polar Motion Excitation from Gravity Field Models Obtained from Kinematic Orbits of LEO Satellites

[1]  T. Dam,et al.  A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations , 2016 .

[2]  B. Kołaczek,et al.  Seasonal excitation of polar motion estimated from recent geophysical models and observations , 2009 .

[3]  A. Bezděk,et al.  Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites , 2014 .

[4]  J. Nastula,et al.  Hydrological Excitation of Polar Motion Derived from GRACE Gravity Field Solutions , 2011 .

[5]  Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0 , 2011 .

[6]  J. Nastula,et al.  Further evidence for oceanic excitation of polar motion , 1999 .

[7]  Torsten Mayer-Gürr,et al.  Precise orbit determination based on raw GPS measurements , 2016, Journal of Geodesy.

[8]  Frank Flechtner,et al.  Contributions of GRACE to understanding climate change , 2019, Nature Climate Change.

[9]  A. Jäggi,et al.  Gravity field models derived from Swarm GPS data , 2016, Earth, Planets and Space.

[10]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[11]  CHAMP, GRACE and GOCE: Mission concepts and simulations , 1999 .

[12]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  A. Brzeziński,et al.  Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere , 2010 .

[14]  O. Viron,et al.  Extracting low frequency climate signal from GRACE data , 2006 .

[15]  Florian Seitz,et al.  Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models , 2018, Earth, Planets and Space.

[16]  R. König,et al.  A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 , 2017 .

[17]  J. Nastula,et al.  Terrestrial water storage variations and their effect on polar motion , 2018, Acta Geophysica.

[18]  J. Nastula,et al.  Hydrological signals in polar motion excitation – Evidence after fifteen years of the GRACE mission , 2019, Journal of Geodynamics.

[19]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[20]  J. Nastula,et al.  Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids , 2007 .

[21]  B. Kołaczek,et al.  Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion , 2016, Acta Geophysica.

[22]  A. Bezděk,et al.  Time-variable gravity fields derived from GPS tracking of Swarm , 2016 .

[23]  J. Nastula,et al.  Hydrological excitation of polar motion by different variables from the GLDAS models , 2015, Journal of Geodesy.

[24]  Dimitris Menemenlis,et al.  Atmospheric and oceanic excitation of the Earth's wobbles during 1980–2000 , 2003 .

[25]  Christian Rocken,et al.  COSMIC System Description , 2000 .

[26]  H. Bock,et al.  Swarm kinematic orbits and gravity fields from 18 months of GPS data , 2016 .

[27]  J. Kusche,et al.  Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits , 2017 .

[28]  B. Kołaczek,et al.  Patterns of atmospheric excitation functions of polar motion from high‐resolution regional sectors , 2009 .

[29]  Jean-Yves Richard,et al.  The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014 , 2019, Journal of Geodesy.