GLIO: A New Method for Grouping Like-Minded Users

Grouping like-minded users is one of the emerging problems in Social Network Analysis. Indeed, it gives a good idea about group formation and social network evolution. Also, it explains various social phenomena and leads to many applications, such as friends suggestion and collaborative filtering. In this paper, we introduce a novel unsupervised method for grouping like-minded users within social networks. Such a method detects groups of users sharing the same interest centers and having similar opinions. In fact, the proposed method is based on extracting the interest centers and retrieving the polarities from the user’s textual posts. We validate our results by employing multiple clustering evaluation measures (recall, precision, F-score and Rand-Index). We compare our algorithm to a number of other clustering algorithms and opinion detection API. Results prove that the algorithm presented is efficient.

[1]  L. Venkata Subramaniam,et al.  Using content and interactions for discovering communities in social networks , 2012, WWW.

[2]  Ari Rappoport,et al.  Efficient Clustering of Short Messages into General Domains , 2013, ICWSM.

[3]  Janyce Wiebe,et al.  Just How Mad Are You? Finding Strong and Weak Opinion Clauses , 2004, AAAI.

[4]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[5]  Jian Liu,et al.  Comparative Analysis for k-Means Algorithms in Network Community Detection , 2010, ISICA.

[6]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[7]  Salma Jamoussi,et al.  Dynamic Construction of Dictionaries for Sentiment Classification , 2013, ICDM Workshops.

[8]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[9]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Yun Chi,et al.  Combining link and content for community detection: a discriminative approach , 2009, KDD.

[11]  Wei-keng Liao,et al.  User-Interest based Community Extraction in Social Networks , 2012, KDD 2012.

[12]  Matthew Hurst,et al.  Towards a Robust Metric of Polarity , 2006, Computing Attitude and Affect in Text.

[13]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[14]  H. Kaiser The Application of Electronic Computers to Factor Analysis , 1960 .

[15]  Lylia Abrouk,et al.  Découverte de communautés par analyse des usages , 2010 .

[16]  Charu C. Aggarwal,et al.  A Survey of Text Clustering Algorithms , 2012, Mining Text Data.

[17]  Meena Mahajan,et al.  The planar k-means problem is NP-hard , 2012, Theor. Comput. Sci..

[18]  Kuat Yessenov,et al.  Sentiment Analysis of Movie Review Comments , 2009 .

[19]  Pericles A. Mitkas,et al.  Multilingual Sentiment Analysis Using Emoticons and Keywords , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[20]  Vibhu O. Mittal,et al.  Comparative Experiments on Sentiment Classification for Online Product Reviews , 2006, AAAI.

[21]  Yue Xu,et al.  Mining Users' Opinions Based on Item Folksonomy and Taxonomy for Personalized Recommender Systems , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[22]  M. Genereux,et al.  Defi: classification de textes Francais subjectifs , 2007 .

[23]  Charu C. Aggarwal,et al.  Community Detection with Edge Content in Social Media Networks , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[24]  Huan Liu,et al.  Connecting users with similar interests via tag network inference , 2011, CIKM '11.

[25]  Iadh Ounis,et al.  Overview of the TREC 2011 Microblog Track , 2011, TREC.

[26]  Salma Jamoussi,et al.  Dynamic Construction of Dictionaries for Sentiment Classification , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[27]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[28]  Huan Liu,et al.  Community detection via heterogeneous interaction analysis , 2012, Data Mining and Knowledge Discovery.

[29]  Dragomir R. Radev,et al.  Detecting Subgroups in Online Discussions by Modeling Positive and Negative Relations among Participants , 2012, EMNLP.

[30]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[31]  Qiaozhu Mei,et al.  Classifying the Political Leaning of News Articles and Users from User Votes , 2011, ICWSM.

[32]  C. Lee Giles,et al.  CiteSeer: an automatic citation indexing system , 1998, DL '98.

[33]  Andrew McCallum,et al.  Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email , 2007, J. Artif. Intell. Res..

[34]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[35]  Gérard Dray,et al.  Web opinion mining: how to extract opinions from blogs? , 2008, CSTST.

[36]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[37]  Dragomir R. Radev,et al.  Identifying Opinion Subgroups in Arabic Online Discussions , 2013, ACL.

[38]  Bamshad Mobasher,et al.  Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering , 2008, DaWaK.

[39]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[40]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Yun Chi,et al.  Discovery of Blog Communities based on Mutual Awareness , 2006 .

[42]  Christos Faloutsos,et al.  Statistical Properties of Social Networks , 2011, Social Network Data Analytics.

[43]  Damien Poirier Des textes communautaires à la recommandation , 2011 .

[44]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[45]  Bing Liu,et al.  The utility of linguistic rules in opinion mining , 2007, SIGIR.

[46]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[47]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[48]  Philip S. Yu,et al.  On Text Clustering with Side Information , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[49]  S. Jaffali,et al.  Principal component analysis neural network for textual document categorization and dimension reduction , 2012, 2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT).

[50]  Uzay Kaymak,et al.  Exploiting emoticons in sentiment analysis , 2013, SAC '13.

[51]  Omar Boussaïd,et al.  Community Extraction Based on Topic-Driven-Model for Clustering Users Tweets , 2012, ADMA.

[52]  Stefan Siersdorfer,et al.  A neighborhood-based approach for clustering of linked document collections , 2006, CIKM '06.