Tactical asset allocation on technical trading rules and data snooping

In this paper, we investigate the performance of tactical asset allocation on technical trading rules controlling for data snooping bias. By using reality check (RC), superior predictive ability (SPA) test and their extensions, and false discovery rate (FDR), we find that none of 15376 technical trading rules at monthly frequency outperforms buy-and-hold (B&H) strategy in terms of 1/N portfolio. In addition, we also investigate the performance of tactical asset allocation in terms of other usual portfolio strategies: minimum variance portfolio (MVP), tangency portfolio (TP), equally weighted risk contribution portfolio (ERCP), most diversified portfolio (MDP), Volatility timing portfolio (VTP) and Reward-to-risk timing portfolio (RRTP). Our empirical study shows that no tactical asset allocation strategies on technical trading rules outperform B&H benchmark. Our findings call into question the value of tactical asset allocation on technical trading rules.

[1]  Edward E. Leamer,et al.  Specification Searches: Ad Hoc Inference with Nonexperimental Data , 1980 .

[2]  T. Roncalli,et al.  The properties of equally-weighted risk contributions portfolios , 2010 .

[3]  Olivier Scaillet,et al.  Financial Valuation and Risk Management Working Paper No . 452 Technical Trading Revisited : False Discoveries , Persistence Tests , and Transaction Costs , 2011 .

[4]  O. Scaillet,et al.  False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas , 2005 .

[5]  Chung-Ming Kuan,et al.  Testing the Predictive Ability of Technical Analysis Using a New Stepwise Test Without Data Snooping Bias , 2009 .

[6]  M. Ready,et al.  Profits from Technical Trading Rules , 1998 .

[7]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[8]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[9]  Edward E. Leamer,et al.  Let's Take the Con Out of Econometrics , 1983 .

[10]  Fahad W. Almudhaf,et al.  Can technical analysis generate superior returns in securitized property markets? Evidence from East Asia markets , 2018 .

[11]  Chung-Ming Kuan,et al.  A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing , 2014 .

[12]  A. Timmermann,et al.  Can Mutual Fund 'Stars' Really Pick Stocks? New Evidence from a Bootstrap Analysis , 2005 .

[13]  Chris Kirby,et al.  It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification , 2010, Journal of Financial and Quantitative Analysis.

[14]  E. Fama,et al.  Filter Rules and Stock-Market Trading , 1966 .

[15]  Melvyn Teo,et al.  Do Hedge Funds Deliver Alpha? A Bayesian and Bootstrap Analysis , 2005 .

[16]  Shinn-Juh Lin,et al.  Value investing and technical analysis in Taiwan stock market , 2014 .

[17]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[18]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[19]  Michael Wolf,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 17 Stewise Multiple Testing as Formalized Data Snooping Stepwise Multiple Testing as Formalized Data Snooping , 2022 .

[20]  E. Fama,et al.  Luck Versus Skill in the Cross Section of Mutual Fund Returns , 2009 .

[21]  Why investors use technical analysis? Information discovery versus herding behavior , 2015 .

[22]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[23]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[24]  Christopher J. Neely,et al.  Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach , 1996, Journal of Financial and Quantitative Analysis.

[25]  Yves Choueifaty,et al.  Toward Maximum Diversification , 2008, The Journal Of Portfolio Management.

[26]  Guofu Zhou,et al.  Technical analysis: An asset allocation perspective on the use of moving averages , 2009 .

[27]  Michael Wolf,et al.  Control of generalized error rates in multiple testing , 2007, 0710.2258.

[28]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[29]  Kalok Chan,et al.  The profitability of technical trading rules in the Asian stock markets , 1995 .

[30]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[31]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[32]  Andrei Shynkevich Performance of technical analysis in growth and small cap segments of the US equity market , 2012 .