[7] A. Asuncion and D. J. Newman. UCI Machine Learning Repository

[3] Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm for finding quantiles. A one-pass algorithm for accurately estimating quantiles for disk-resident data. [8] Jürgen Beringer and Eyke Hüllermeier. An efficient algorithm for instance-based learning on data streams.

[1]  Mohamed Medhat Gaber,et al.  On-board Mining of Data Streams in Sensor Networks , 2005 .

[2]  João Gama,et al.  Forest trees for on-line data , 2004, SAC '04.

[3]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[4]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[5]  M. Tamer Özsu,et al.  A Web page prediction model based on click-stream tree representation of user behavior , 2003, KDD '03.

[6]  Javier Jaén Martínez,et al.  Data Management in an International Data Grid Project , 2000, GRID.

[7]  J. Hilden Statistical diagnosis based on conditional independence does not require it. , 1984, Computers in biology and medicine.

[8]  Tomasz Imielinski,et al.  Wireless Graffiti - Data, Data Everywhere Matters , 2002, VLDB.

[9]  Tony F. Chan,et al.  Computing standard deviations: accuracy , 1979, CACM.

[10]  Daniel S. Hirschberg,et al.  On the Complexity of Learning Decision Trees , 1996 .

[11]  Stuart J. Russell,et al.  Experimental comparisons of online and batch versions of bagging and boosting , 2001, KDD '01.

[12]  Steven Salzberg,et al.  Lookahead and Pathology in Decision Tree Induction , 1995, IJCAI.

[13]  Sanjeev Khanna,et al.  Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.

[14]  Lei Liu,et al.  MobiMine: monitoring the stock market from a PDA , 2002, SKDD.

[15]  Geoff Hulten,et al.  Mining complex models from arbitrarily large databases in constant time , 2002, KDD.

[16]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[17]  Jorma Rissanen,et al.  SLIQ: A Fast Scalable Classifier for Data Mining , 1996, EDBT.

[18]  B. Welford Note on a Method for Calculating Corrected Sums of Squares and Products , 1962 .

[19]  Paul E. Utgoff,et al.  Incremental Induction of Decision Trees , 1989, Machine Learning.

[20]  Paul E. Utgoff,et al.  Decision Tree Induction Based on Efficient Tree Restructuring , 1997, Machine Learning.

[21]  Sudipto Guha,et al.  Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..

[22]  João Gama,et al.  Stream-Based Electricity Load Forecast , 2007, PKDD.

[23]  Kun Liu,et al.  VEDAS: A Mobile and Distributed Data Stream Mining System for Real-Time Vehicle Monitoring , 2004, SDM.

[24]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[25]  Carlo Zaniolo,et al.  An Adaptive Nearest Neighbor Classification Algorithm for Data Streams , 2005, PKDD.

[26]  Jeffrey Scott Vitter,et al.  Random sampling with a reservoir , 1985, TOMS.

[27]  João Gama,et al.  Discretization from data streams: applications to histograms and data mining , 2006, SAC.

[28]  Osamu Watanabe,et al.  MadaBoost: A Modification of AdaBoost , 2000, COLT.

[29]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[31]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[32]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[33]  Ron Kohavi,et al.  Option Decision Trees with Majority Votes , 1997, ICML.

[34]  Jiawei Han,et al.  Data Mining for Web Intelligence , 2002, Computer.

[35]  G DietterichThomas Approximate statistical tests for comparing supervised classification learning algorithms , 1998 .

[36]  Donald D. Chamberlin,et al.  Access Path Selection in a Relational Database Management System , 1989 .

[37]  Rakesh Agrawal,et al.  SPRINT: A Scalable Parallel Classifier for Data Mining , 1996, VLDB.

[38]  Mohamed Medhat Gaber,et al.  A Survey of Classification Methods in Data Streams , 2007, Data Streams - Models and Algorithms.

[39]  Thomas G. Dietterich Machine-Learning Research Four Current Directions , 1997 .

[40]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[41]  David J. Hand,et al.  An Empirical Comparison of Three Boosting Algorithms on Real Data Sets with Artificial Class Noise , 2003, Multiple Classifier Systems.

[42]  Ron Kohavi,et al.  Bias Plus Variance Decomposition for Zero-One Loss Functions , 1996, ICML.

[43]  Huan Liu,et al.  Handling concept drifts in incremental learning with support vector machines , 1999, KDD '99.

[44]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[45]  Mark Last,et al.  Online classification of nonstationary data streams , 2002, Intell. Data Anal..

[46]  Geoff Holmes,et al.  Stress-Testing Hoeffding Trees , 2005, PKDD.

[47]  Gary M. Weiss Data Mining in Telecommunications , 2005, The Data Mining and Knowledge Discovery Handbook.

[48]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[49]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[50]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[51]  Qin Ding,et al.  k-nearest Neighbor Classification on Spatial Data Streams Using P-trees , 2002, PAKDD.

[52]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[53]  Ron Kohavi,et al.  Applications of Data Mining to Electronic Commerce , 2000, Springer US.

[54]  Robert L. Grossman,et al.  Data Mining for Scientific and Engineering Applications , 2001, Massive Computing.

[55]  Myra Spiliopoulou,et al.  The Laborious Way From Data Mining to Web Log Mining , 1999 .

[56]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[57]  Sudipto Guha,et al.  Clustering Data Streams , 2000, FOCS.

[58]  David J. Hand,et al.  Mining Personal Banking Data to Detect Fraud , 2007 .

[59]  João Gama,et al.  Accurate decision trees for mining high-speed data streams , 2003, KDD '03.

[60]  Mohamed Medhat Gaber,et al.  A fuzzy approach for interpretation of ubiquitous data stream clustering and its application in road safety , 2007, Intell. Data Anal..

[61]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[62]  Hisashi Nakamura,et al.  Mining Geophysical Data for Knowledge , 1996, IEEE Expert.

[63]  Thomas G. Dietterich,et al.  Pruning Adaptive Boosting , 1997, ICML.

[64]  Stuart J. Russell,et al.  Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[65]  JOHANNES GEHRKE,et al.  RainForest—A Framework for Fast Decision Tree Construction of Large Datasets , 1998, Data Mining and Knowledge Discovery.

[66]  Salvatore J. Stolfo,et al.  Mining in a data-flow environment: experience in network intrusion detection , 1999, KDD '99.

[67]  Kagan Tumer,et al.  Error Correlation and Error Reduction in Ensemble Classifiers , 1996, Connect. Sci..

[68]  Bruce G. Lindsay,et al.  Approximate medians and other quantiles in one pass and with limited memory , 1998, SIGMOD '98.

[69]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[70]  Ruoming Jin,et al.  Efficient decision tree construction on streaming data , 2003, KDD '03.

[71]  Mohamed Medhat Gaber,et al.  Learning from Data Streams: Processing Techniques in Sensor Networks , 2007 .

[72]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[73]  Michael K. Ng,et al.  Data-Mining Massive Time Series Astronomical Data Sets - A Case Study , 1998, PAKDD.

[74]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[75]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[76]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[77]  Leslie G. Valiant,et al.  Cryptographic Limitations on Learning Boolean Formulae and Finite Automata , 1993, Machine Learning: From Theory to Applications.

[78]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[79]  Yoav Freund,et al.  Discussion of the paper "Arcing Classifiers" by Leo Breiman , 1998 .

[80]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[81]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[82]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[83]  Wray L. Buntine,et al.  Learning classification trees , 1992 .

[84]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[85]  Carlo Zaniolo,et al.  Fast and Light Boosting for Adaptive Mining of Data Streams , 2004, PAKDD.

[86]  Imrich Chlamtac,et al.  The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations , 1985, CACM.