Classification Of Lymph Node Metastases In Breast Cancer With Features From Tissue Images Using Machine Learning Techniques

UNIVERSITY OF TAMPERE Master’s Degree Programme in Bioinformatics JYOTI PRASAD BARTAULA: Classification Of Lymph Node Metastases In Breast Cancer With Features From Tissue Images Using Machine Learning Techniques Master of Science Thesis, 64 pages, 2 Appendix pages May 2017 Major subject: Bioinformatics Supervisor: Thomas Liuksiala Reviewers: Professor Matti Nykter, Juha Kesseli

[1]  Kaisa Liimatainen,et al.  Metastasis detection from whole slide images using local features and random forests , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[2]  Rui Zhang,et al.  A novel feature selection method considering feature interaction , 2015, Pattern Recognit..

[3]  Navid Farahani,et al.  whole slide imaging in pathology: advantages, limitations, and emerging perspectives , 2015 .

[4]  J. Jebamalar Tamilselvi,et al.  A Review of Feature Selection Algorithms for Data Mining Techniques , 2015 .

[5]  Bahram Parvin,et al.  Automated Histology Analysis: Opportunities for signal processing , 2015, IEEE Signal Processing Magazine.

[6]  Vipin Kumar,et al.  Feature Selection: A literature Review , 2014, Smart Comput. Rev..

[7]  Shou‐Tung Chen,et al.  Prediction of axillary lymph node metastases in breast cancer patients based on pathologic information of the primary tumor , 2014, Medical science monitor : international medical journal of experimental and clinical research.

[8]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[9]  Huan Liu,et al.  Feature Selection for Classification: A Review , 2014, Data Classification: Algorithms and Applications.

[10]  Andreas Kårsnäs,et al.  Image Analysis Methods and Tools for Digital Histopathology Applications Relevant to Breast Cancer Diagnosis , 2014 .

[11]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[12]  Benjamin Haibe-Kains,et al.  mRMRe: an R package for parallelized mRMR ensemble feature selection , 2013, Bioinform..

[13]  Inan Güler,et al.  A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer , 2013, Eng. Appl. Artif. Intell..

[14]  J. Havel,et al.  Artificial neural networks in medical diagnosis , 2013 .

[15]  R. Gillies,et al.  Molecular imaging of breast cancer lymph node metastasis. , 2012, European journal of radiology.

[16]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[17]  Masaru Tomita,et al.  Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model , 2012, BMC Medical Informatics and Decision Making.

[18]  Scott Fortmann-Roe,et al.  Understanding the bias-variance tradeoff , 2012 .

[19]  Anne-Laure Boulesteix,et al.  AUC-RF: A New Strategy for Genomic Profiling with Random Forest , 2011, Human Heredity.

[20]  Badrinath Roysam,et al.  Cell‐based quantification of molecular biomarkers in histopathology specimens , 2011, Histopathology.

[21]  Marcel Jirina,et al.  Classifiers Based on Inverted Distances , 2011 .

[22]  John D. Pfeifer,et al.  Review of the current state of whole slide imaging in pathology , 2011, Journal of pathology informatics.

[23]  Olcay Sertel,et al.  Image Analysis for Computer-aided Histopathology , 2010 .

[24]  Lior Rokach,et al.  Ensemble Methods in Supervised Learning , 2010, Data Mining and Knowledge Discovery Handbook.

[25]  J. Sleeman,et al.  Tumor metastasis and the lymphatic vasculature , 2009, International journal of cancer.

[26]  A. Madabhushi,et al.  Histopathological Image Analysis: A Review , 2009, IEEE Reviews in Biomedical Engineering.

[27]  Yanbo Huang,et al.  Advances in Artificial Neural Networks - Methodological Development and Application , 2009, Algorithms.

[28]  Sanjay Ranka,et al.  Classification and feature selection algorithms for multi-class CGH data , 2008, ISMB.

[29]  Graham R. Ball,et al.  Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach , 2008, Artif. Intell. Medicine.

[30]  Melanie Hilario,et al.  Approaches to dimensionality reduction in proteomic biomarker studies , 2007, Briefings Bioinform..

[31]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[32]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[33]  Sarah Jane Delany k-Nearest Neighbour Classifiers , 2007 .

[34]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[35]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[36]  Jason Weston,et al.  Embedded Methods , 2006, Feature Extraction.

[37]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[38]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  B. Yener,et al.  Automated cancer diagnosis based on histopathological images : a systematic survey , 2005 .

[40]  Yongdai Kim,et al.  Gradient LASSO for feature selection , 2004, ICML.

[41]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[42]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[43]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[44]  D. Weaver,et al.  Comparison of Pathologist-Detected and Automated Computer-Assisted Image Analysis Detected Sentinel Lymph Node Micrometastases in Breast Cancer , 2003, Modern Pathology.

[45]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[46]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[47]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[48]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[49]  Peter Carmeliet,et al.  Molecular mechanisms of lymphangiogenesis in health and disease. , 2002, Cancer cell.

[50]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[51]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[52]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[53]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[54]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[55]  A M Marchevsky,et al.  Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. , 1999, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[56]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[57]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[58]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[61]  P. Langley Selection of Relevant Features in Machine Learning , 1994 .

[62]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[63]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[64]  C C Whitcomb,et al.  Morphological subclassification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the Repository Center and Pathology Panel for Lymphoma Clinical Studies. , 1985, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[65]  B Stenkvist,et al.  Histopathological systems of breast cancer classification: reproducibility and clinical significance. , 1983, Journal of clinical pathology.

[66]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[67]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..