A cooperative radial basis function method for variable-fidelity surrogate modeling

By coupling the low-fidelity (LF) model with the high-fidelity (HF) samples, the variable-fidelity model (VFM) offers an efficient way to overcome the expensive computing challenge in multidisciplinary design optimization (MDO). In this paper, a cooperative radial basis function (Co-RBF) method for the VFM is proposed by modifying the basis function of RBF. The RBF method is constructed on the HF samples, while the Co-RBF method incorporates the entire information of the LF model with the HF samples. In Co-RBF, the LF model is regard as a basis function of Co-RBF and the HF samples are utilized to compute the Co-RBF model coefficients. Two numerical functions and three engineering problems are adopted to verify the proposed Co-RBF method. The predictive results of Co-RBF are compared with those of RBF and Co-Kriging, which show that the Co-RBF method improves the efficiency, accuracy and robustness of the existing VFMs.

[1]  Stefan Görtz,et al.  Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling , 2012 .

[2]  Pierre-Alain Boucard,et al.  Variable-fidelity modeling of structural analysis of assemblies , 2016, J. Glob. Optim..

[3]  Igor V. Tetko,et al.  Neural network studies, 1. Comparison of overfitting and overtraining , 1995, J. Chem. Inf. Comput. Sci..

[4]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[5]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[6]  Shawn E. Gano,et al.  Hybrid Variable Fidelity Optimization by Using a Kriging-Based Scaling Function , 2005 .

[7]  Stephen G. Nash,et al.  Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..

[8]  Kenji Takeda,et al.  Multifidelity surrogate modeling of experimental and computational aerodynamic data sets , 2011 .

[9]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[11]  Liang Gao,et al.  A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction , 2013 .

[12]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[13]  Zhenghong Gao,et al.  Variable Fidelity Surrogate Assisted Optimization Using A Suite of Low Fidelity Solvers , 2012 .

[14]  Shawn E. Gano,et al.  Update strategies for kriging models used in variable fidelity optimization , 2006 .

[15]  Bernd Bischl,et al.  MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization , 2014, LION.

[16]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[17]  Piet Demeester,et al.  A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design , 2010, J. Mach. Learn. Res..

[18]  Andy J. Keane,et al.  Computational Approaches for Aerospace Design: The Pursuit of Excellence , 2005 .

[19]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[20]  Xiao Lin Zhang,et al.  Variable-Fidelity Multidisciplinary Design Optimization Based on Analytical Target Cascading Framework , 2012 .

[21]  Komahan Boopathy,et al.  A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model , 2013 .

[22]  J. F. Rodríguez,et al.  Sequential approximate optimization using variable fidelity response surface approximations , 2000 .

[23]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[24]  Slawomir Koziel,et al.  Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress , 2015, J. Comput. Sci..

[25]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[26]  Carolyn Conner Seepersad,et al.  Building Surrogate Models Based on Detailed and Approximate , 2004, DAC 2004.

[27]  R. Haftka Combining global and local approximations , 1991 .

[28]  Anirban Chaudhuri,et al.  Parallel surrogate-assisted global optimization with expensive functions – a survey , 2016 .

[29]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[30]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[31]  Andy J. Keane,et al.  A Knowledge-Based Approach To Response Surface Modelling in Multifidelity Optimization , 2003, J. Glob. Optim..

[32]  Piotr Breitkopf,et al.  Multidisciplinary Design Optimization in Computational Mechanics , 2013 .

[33]  Jean-Yves Trépanier,et al.  Variable-fidelity optimization: Efficiency and robustness , 2006 .

[34]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[35]  Joaquim R. R. A. Martins,et al.  Surrogate models and mixtures of experts in aerodynamic performance prediction for aircraft mission analysis , 2015 .

[36]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .