Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems

We design numerical schemes for nonlinear degenerate parabolic systems with possibly dominant convection. These schemes are based on discrete BGK models where both characteristic velocities and the source-term depend singularly on the relaxation parameter. General stability conditions are derived, and convergence is proved to the entropy solutions for scalar equations.

[1]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[2]  Roberto Natalini,et al.  Convergence of diffusive BGK approximations for nonlinear strongly parabolic systems , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[4]  Shi Jin,et al.  Diffusion limit of a hyperbolic system with relaxation , 1998 .

[5]  R. Natalini,et al.  Weakly coupled systems of quasilinear hyperbolic equations , 1996, Differential and Integral Equations.

[6]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[7]  R. Natalini A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .

[8]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[9]  Piero D'Ancona,et al.  The Cauchy problem for weakly parabolic systems , 1997 .

[10]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[11]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[12]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[13]  K. Karlsen,et al.  Operator spltting methods for systems of convection-diffusion equations: Nonlinear error mechanisms and correction strategies , 2001 .

[14]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[15]  François Bouchut,et al.  Entropy satisfying flux vector splittings and kinetic BGK models , 2003, Numerische Mathematik.

[16]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[17]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[18]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[19]  R. Natalini,et al.  Convergence of relaxation schemes for conservation laws , 1996 .

[20]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[21]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[22]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[23]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[24]  Pierre-Louis Lions,et al.  Diffusive limit for finite velocity Boltzmann kinetic models , 1997 .

[25]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[26]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[27]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[28]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[29]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[30]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[31]  R. Natalini Convergence to equilibrium for the relaxation approximations of conservation laws , 1996 .