High‐performance transformation of protein structure representation from internal to Cartesian coordinates

We present a highly parallel algorithm to convert internal coordinates of a polymeric molecule into Cartesian coordinates. Traditionally, converting the structures of polymers (e.g., proteins) from internal to Cartesian coordinates has been performed serially, due to an inherent linear dependency along the polymer chain. We show this dependency can be removed using a tree‐based concatenation of coordinate transforms between segments, and then parallelized efficiently on graphics processing units (GPUs). The conversion algorithm is applicable to protein engineering and fitting protein structures to experimental data, and we observe an order of magnitude speedup using parallel processing on a GPU compared to serial execution on a CPU.

[1]  Y. Nishikawa,et al.  Evaluation of three algorithms for ab initio determination of three-dimensional shape from one-dimensional solution scattering profiles , 2003 .

[2]  Jeffrey R. Wagner,et al.  GneimoSim: A modular internal coordinates molecular dynamics simulation package , 2014, J. Comput. Chem..

[3]  Robert L Jernigan,et al.  Protein flexibility: coordinate uncertainties and interpretation of structural differences. , 2009, Acta crystallographica. Section D, Biological crystallography.

[4]  James E. Fitzgerald,et al.  Polypeptide motions are dominated by peptide group oscillations resulting from dihedral angle correlations between nearest neighbors. , 2007, Biochemistry.

[5]  Enrique S. Quintana-Ortí,et al.  Exploring large macromolecular functional motions on clusters of multicore processors , 2013, J. Comput. Phys..

[6]  Mohammed AlQuraishi,et al.  Parallelized Natural Extension Reference Frame: Parallelized Conversion from Internal to Cartesian Coordinates , 2019, J. Comput. Chem..

[7]  M. A. O. Ignacio,et al.  How to cite this article , 2016 .

[8]  M. Ikeguchi,et al.  Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates. , 2016, Journal of chemical theory and computation.

[9]  Abhishek K. Jha,et al.  Automated real-space refinement of protein structures using a realistic backbone move set. , 2011, Biophysical journal.

[10]  B. Matthews,et al.  Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. , 1993, The Journal of biological chemistry.

[11]  Florence Tama,et al.  Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data. , 2008, Biophysical journal.

[12]  Vladimir V. Rybkin,et al.  Internal‐to‐Cartesian back transformation of molecular geometry steps using high‐order geometric derivatives , 2013, J. Comput. Chem..

[13]  A. Mazur Quasi‐Hamiltonian equations of motion for internal coordinate molecular dynamics of polymers , 1997 .

[14]  Kim Palmo,et al.  A new formalism for molecular dynamics in internal coordinates , 2001 .

[15]  Alexis T. Bell,et al.  Sorption Thermodynamics, Siting, and Conformation of Long n-Alkanes in Silicalite As Predicted by Configurational-Bias Monte Carlo Integration , 1995 .

[16]  N Go,et al.  Collective variable description of native protein dynamics. , 1995, Annual review of physical chemistry.

[17]  R A Abagyan,et al.  New methodology for computer-aided modelling of biomolecular structure and dynamics. 2. Local deformations and cycles. , 1989, Journal of biomolecular structure & dynamics.

[18]  Maxim Totrov,et al.  Development of a new physics‐based internal coordinate mechanics force field and its application to protein loop modeling , 2011, Proteins.

[19]  Pablo Chacón,et al.  Random Coordinate Descent with Spinor-matrices and Geometric Filters for Efficient Loop Closure. , 2013, Journal of chemical theory and computation.

[20]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[21]  J. Maurice Rojas,et al.  Practical conversion from torsion space to Cartesian space for in silico protein synthesis , 2005, J. Comput. Chem..

[22]  Pablo Chacón,et al.  Spinor product computations for protein conformations , 2012, J. Comput. Chem..

[23]  Abhinandan Jain,et al.  Equipartition Principle for Internal Coordinate Molecular Dynamics. , 2012, Journal of chemical theory and computation.

[24]  David S. Moss,et al.  Comparison of Two Independently Refined Models of Ribonuclease-A , 1986 .

[25]  R. Abagyan,et al.  New methodology for computer-aided modelling of biomolecular structure and dynamics. 1. Non-cyclic structures. , 1989, Journal of biomolecular structure & dynamics.

[26]  R. Hegger,et al.  Dihedral angle principal component analysis of molecular dynamics simulations. , 2007, The Journal of chemical physics.

[27]  D. W. Noid,et al.  Computation of internal coordinates, derivatives, and gradient expressions: torsion and improper torsion , 2000, J. Comput. Chem..

[28]  Pin-Kuang Lai,et al.  Internal coordinate density of state from molecular dynamics simulation , 2015, J. Comput. Chem..

[29]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[30]  Pieter Chys,et al.  Application of geometric algebra for the description of polymer conformations. , 2008, The Journal of chemical physics.

[31]  G. Stock,et al.  Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates. , 2014, The Journal of chemical physics.

[32]  Abhinandan Jain,et al.  Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics , 2014, The journal of physical chemistry. B.

[33]  C D Schwieters,et al.  Internal coordinates for molecular dynamics and minimization in structure determination and refinement. , 2001, Journal of magnetic resonance.

[34]  Katrin Stierand,et al.  Drawing the PDB: Protein-Ligand Complexes in Two Dimensions. , 2010, ACS medicinal chemistry letters.

[35]  N. Go,et al.  Investigating protein dynamics in collective coordinate space. , 1999, Current opinion in structural biology.

[36]  R. Pappu,et al.  A simple molecular mechanics integrator in mixed rigid body and dihedral angle space. , 2014, The Journal of chemical physics.

[37]  S. Manogaran,et al.  A relook at the compliance constants in redundant internal coordinates and some new insights. , 2009, The Journal of chemical physics.

[38]  Gerhard Stock,et al.  Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. , 2008, The Journal of chemical physics.

[39]  Andreas Vitalis,et al.  ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions , 2009, J. Comput. Chem..

[40]  C. Bystroff An alternative derivation of the equations of motion in torsion space for a branched linear chain. , 2001, Protein engineering.

[41]  Ruben Abagyan,et al.  Efficient parallelization of the energy, surface, and derivative calculations for internal coordinate mechanics , 1994, J. Comput. Chem..

[42]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[43]  Károly Németh,et al.  The choice of internal coordinates in complex chemical systems , 2010, J. Comput. Chem..

[44]  Jaydeep P. Bardhan,et al.  Accelerating protein coordinate conversion using GPUs , 2014, 2014 IEEE High Performance Extreme Computing Conference (HPEC).

[45]  Andreas Vitalis,et al.  Methods for Monte Carlo simulations of biomacromolecules. , 2009, Annual reports in computational chemistry.

[46]  Kazem Kazerounian,et al.  On the rotational operators in protein structure simulations. , 2003, Protein engineering.

[47]  R. Abagyan,et al.  Derivation and testing of explicit equations of motion for polymers described by internal coordinates , 1991 .

[48]  Abhinandan Jain,et al.  Advanced techniques for constrained internal coordinate molecular dynamics , 2013, J. Comput. Chem..

[49]  Victor Guallar,et al.  PELE:  Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique. , 2005, Journal of chemical theory and computation.