Color-to-spin ribbon Schensted algorithms

A new Schensted bijection is given from colored permutations to pairs of standard k-ribbon tableaux, such that twice the total color of the colored permutation, is equal to the sum of the spins of the pair of tableaux. A highly nontrivial extension of this bijection is also given, from colored words to a pair of k-ribbon tableaux, one semistandard and the other standard.

[1]  Dan Barbasch,et al.  Primitive ideals and orbital integrals in complex classical groups , 1982 .

[2]  Marc A. A. van Leeuwen,et al.  Edge Sequences, Ribbon Tableaux, and an Action of Affine Permutations , 1999, Eur. J. Comb..

[3]  Jean-Yves Thibon,et al.  Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials , 1998, math/9809122.

[4]  Bruce E. Sagan,et al.  Robinson-schensted algorithms for skew tableaux , 1990, J. Comb. Theory A.

[5]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .

[6]  Sergey Fomin,et al.  Schensted Algorithms for Dual Graded Graphs , 1995 .

[7]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[8]  Alain,et al.  RIBBON TABLEAUX , HALL-LITTLEWOOD FUNCTIONS AND UNIPOTENT VARIETIES ∗ , 1997 .

[9]  Mark Shimozono,et al.  A Color-to-Spin Domino Schensted Algorithm , 2001, Electron. J. Comb..

[10]  Marc van Leeuwen,et al.  The Robinson-Schensted and Schützenberger algorithms, an elementary approach , 1995, Electron. J. Comb..

[11]  Masaki Kashiwara,et al.  Parabolic Kazhdan-Lusztig polynomials and Schubert varieties , 1999 .

[12]  Sergey Fomin,et al.  Duality of Graded Graphs , 1994 .

[13]  Compositio Mathematica,et al.  On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .

[14]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[15]  James B. Shearer,et al.  A New Construction for Cancellative Families of Sets , 1996, Electron. J. Comb..