Three-step vapor Se/N2/vapor Se reaction of electrodeposited Cu/In/Ga precursor for preparing CuInGaSe2 thin films

[1]  Shih-yuan Wei,et al.  Na‐induced efficiency boost for Se‐deficient Cu(In,Ga)Se2 solar cells , 2015 .

[2]  R. Klenk,et al.  Time‐resolved investigation of Cu(In,Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors , 2015 .

[3]  G. H. Bauer,et al.  Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells , 2015 .

[4]  Kihwan Kim,et al.  Composition and bandgap control in Cu(In,Ga)Se2‐based absorbers formed by reaction of metal precursors , 2015 .

[5]  S. Joshi,et al.  Photoelectrochemistry of Cu(In,Ga)Se 2 thin-films fabricated by sequential pulsed electrodeposition , 2015 .

[6]  A. Eicke,et al.  Influence of iron on the performance of CIGS thin-film solar cells , 2014 .

[7]  P. Grand,et al.  Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors , 2013 .

[8]  R. Caballero,et al.  Influence of iron on defect concentrations and device performance for Cu(In,Ga)Se2 solar cells on stainless steel substrates , 2012 .

[9]  Kihwan Kim,et al.  Three-step H2Se/Ar/H2S reaction of Cu-In-Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S)2 thin films , 2012 .

[10]  I. Choi Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio , 2011 .

[11]  Susanne Siebentritt,et al.  The electronic structure of chalcopyrites—bands, point defects and grain boundaries , 2010 .

[12]  W. Shafarman,et al.  Ga distribution and adhesion issues in selenization of metallic Cu-Ga-In precursors , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[13]  N. Dhere,et al.  Effect of sodium addition on Cu-deficient CuIn1−xGaxS2 thin film solar cells , 2009 .

[14]  Uwe Rau,et al.  Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells , 2009 .

[15]  M. Powalla,et al.  Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents , 2008 .

[16]  E. A. Payzant,et al.  Reaction kinetics of CuGaSe2 formation from a GaSe/CuSe bilayer precursor film , 2008 .

[17]  P. Sebastián,et al.  Electrodeposition of indium onto Mo/Cu for the deposition of Cu(In,Ga)Se2 thin films , 2008 .

[18]  W. Shafarman,et al.  Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S , 2007 .

[19]  N. McGruer,et al.  Contact resistance study of noble metals and alloy films using a scanning probe microscope test station , 2007 .

[20]  P. Berwian,et al.  Kinetics of the reactive crystallization of CuInSe2 and CuGaSe2 chalcopyrite films for solar cell applications , 2006 .

[21]  A. Weber,et al.  In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess , 2005 .

[22]  B. Pešić,et al.  Electrodeposition of copper: the nucleation mechanisms , 2002 .

[23]  Sudarshan Kundu,et al.  Characterization of Cu(In,Ga)Se2 films by Raman scattering , 2002 .

[24]  Chih-hung Chang Processing and characterization of copper indium selenide for photovoltaic applications , 1999 .

[25]  M. Al‐Jassim,et al.  Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films , 1997 .

[26]  J. Ermer,et al.  The role of gallium in CuInSe/sub 2/ solar cells fabricated by a two-stage method , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[27]  C. Rincón,et al.  Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry , 1992 .

[28]  J. Greenberg,et al.  Thermodynamic properties of In2Se , 1973 .