The Koiter-Newton approach using von Kármán kinematics for buckling analyses of imperfection sensitive structures

The Koiter–Newton approach is a reduced-basis method for nonlinear structural analyses. The method combines Koiter’s approach as a predictor step and the Newton arc-length technique as a corrector step to trace the entire load–displacement equilibrium path of a structure in a step by step manner. This computationally highly efficient and accurate solution method has recently demonstrated a superior performance in nonlinear analyses compared to standard techniques. In this paper we propose an extension to buckling imperfection sensitivity analyses exploiting the method’s stability and reliability. We present two different modeling techniques for imperfection loads that both profit from the Koiter–Newton approach reducing the initial computation steps to a small fraction thereof. We introduce von Karman kinematics which neglect some nonlinear terms of the Green strain–displacement relations to further increase the computational efficiency of the analysis by an essential reduction of the computation effort required to obtain higher order derivatives of the strain energy. Using various numerical examples and benchmark tests we demonstrate the overall high quality and performance of the proposed method.

[1]  Richard Degenhardt,et al.  Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors , 2013 .

[2]  Raimund Rolfes,et al.  Robust design of composite cylindrical shells under axial compression — Simulation and validation , 2008 .

[3]  Giovanni Garcea,et al.  Mixed formulation in Koiter analysis of thin-walled beams , 2001 .

[4]  A.S.L. Chan,et al.  Nonlinear analysis using a reduced number of variables , 1985 .

[5]  T. Rahman A perturbation approach for geometrically nonlinear structural analysis using a general purpose finite element code , 2009 .

[6]  A. Saada Elasticity : theory and applications , 1993 .

[7]  J. Nichols,et al.  Stochastic inverse identification of geometric imperfections in shell structures , 2011 .

[8]  Hamid Zahrouni,et al.  Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants , 2004 .

[9]  J. H. Starnes,et al.  Imperfection sensitivity due to the elastic moduli in the Roorda-Koiter frame , 1996 .

[10]  Paolo Tiso,et al.  Finite element based reduction methods for static and dynamic analysis of thin-walled structures , 2006 .

[11]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[12]  S. Dost,et al.  On the dynamic stability of viscoelastic perfect columns , 1982 .

[13]  Ginevra Salerno,et al.  MODE JUMPING AND ATTRACTIVE PATHS IN MULTIMODE ELASTIC BUCKLING , 1997 .

[14]  E. Carnoy,et al.  Asymptotic study of the elastic postbuckling behavior of structures by the finite element method , 1981 .

[15]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[16]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[17]  Johann Arbocz,et al.  Post-buckling behaviour of structures numerical techniques for more complicated structures , 1987 .

[18]  Ralf Peek,et al.  Postbuckling behavior and imperfection sensitivity of elastic structures by the Lyapunov-Schmidt-Koiter approach , 1993 .

[19]  Francesco Ubertini,et al.  Koiter analysis of folded structures using a corotational approach , 2013 .

[20]  Toropov,et al.  A Koiter-Newton arclength method for buckling-sensitive structures , 2013 .

[21]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[22]  G. Schuëller,et al.  Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections , 2007 .

[23]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[24]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[25]  L. Watson,et al.  A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems , 2000 .

[26]  Richard Degenhardt,et al.  Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells , 2010 .

[27]  S. Lopez,et al.  An effective parametrization for asymptotic extrapolations , 2000 .

[28]  W. Wagner A path-following algorithm with quadratic predictor , 1991 .

[29]  Manolis Papadrakakis,et al.  The effect of material and thickness variability on the buckling load of shells with random initial imperfections , 2005 .

[30]  Giovanni Garcea,et al.  KOITER'S ANALYSIS OF THIN-WALLED STRUCTURES BY A FINITE ELEMENT APPROACH , 1996 .

[31]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[32]  Ke Liang,et al.  A Koiter‐Newton approach for nonlinear structural analysis , 2013 .

[33]  H. Abramovich,et al.  Dynamic buckling of a laminated composite stringer–stiffened cylindrical panel , 2012 .

[34]  R. Seydel Numerical computation of branch points in nonlinear equations , 1979 .

[35]  Eelco Jansen,et al.  Finite Element Based Multi-Mode Initial Post-Buckling Analysis of Composite Cylindrical Shells , 2009 .

[36]  Bouazza Braikat,et al.  Discussion about parameterization in the asymptotic numerical method: Application to nonlinear elastic shells , 2010 .

[37]  Simplified analytical model and numerical simulations of finite-disturbance buckling of columns , 2013 .

[38]  Raffaele Casciaro,et al.  PERTURBATION APPROACH TO ELASTIC POST-BUCKLING ANALYSIS , 1998 .

[39]  E. Schmidt,et al.  Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil , 1908 .

[40]  Xinwei Wang,et al.  Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method , 2007 .

[41]  J. H. Starnes,et al.  Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts , 2005 .

[42]  Bruno Cochelin,et al.  Asymptotic-numerical methods and pade approximants for non-linear elastic structures , 1994 .

[43]  Martti Mikkola,et al.  Tracing the Equilibrium Path beyond Compound Critical Points , 1999 .

[44]  P. Vannucci,et al.  An asymptotic-numerical method to compute bifurcating branches , 1998 .

[45]  K. M. Liew,et al.  Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach , 2014 .

[46]  Raphael T. Haftka,et al.  Adaption of Koiter's method to finite element analysis of snap-through buckling behavior† , 1971 .

[47]  Eelco Jansen,et al.  Finite element based coupled mode initial post-buckling analysis of a composite cylindrical shell ☆ , 2010 .

[48]  T. Kubiak Static and Dynamic Buckling of Thin-Walled Plate Structures , 2013 .

[49]  J. Argyris An excursion into large rotations , 1982 .

[50]  Raffaele Casciaro,et al.  Asymptotic post-buckling FEM analysis using corotational formulation , 2009 .

[51]  Walter Wunderlich,et al.  Direct evaluation of the ‘worst’ imperfection shape in shell buckling , 1997 .

[52]  H. Zahrouni,et al.  High-order prediction-correction algorithms for unilateral contact problems , 2004 .

[53]  M. König,et al.  Geometrically nonlinear finite element behaviour using buckling mode superposition , 1979 .

[54]  B. Cochelin A path-following technique via an asymptotic-numerical method , 1994 .