MURCHISON WIDEFIELD ARRAY OBSERVATIONS OF ANOMALOUS VARIABILITY: A SERENDIPITOUS NIGHT-TIME DETECTION OF INTERPLANETARY SCINTILLATION

We thank an anonymous referee for a thorough and thoughtful review. We thank B. Jackson, C. Loi, and A. Rowlinson for helpful conversations. This scientific work makes use of the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site. Support for the MWA comes from the U.S. National Science Foundation (grants AST-0457585, PHY-0835713, CAREER-0847753, and AST-0908884), the Australian Research Council (LIEF grants LE0775621 and LE0882938), the U.S. Air Force Office of Scientific Research (grant FA9550-0510247), and the Centre for All-sky Astrophysics (an Australian Research Council Centre of Excellence funded by grant CE110001020). D.L.K. is additionally supported by NSF grant AST-1412421. P.K.M. acknowledges partial support from ISRO. Support is also provided by the Smithsonian Astrophysical Observatory, the MIT School of Science, the Raman Research Institute, the Australian National University, and the Victoria University of Wellington (via grant MED-E1799 from the New Zealand Ministry of Economic Development and an IBM Shared University Research Grant). The Australian Federal government provides additional support via the Commonwealth Scientific and Industrial Research Organisation (CSIRO), National Collaborative Research Infrastructure Strategy, Education Investment Fund, and the Australia India Strategic Research Fund, and Astronomy Australia Limited, under contract to Curtin University. We acknowledge the iVEC Petabyte Data Store, the Initiative in Innovative Computing and the CUDA Center for Excellence sponsored by NVIDIA at Harvard University, and the International Centre for Radio Astronomy Research (ICRAR), a Joint Venture of Curtin University and The University of Western Australia, funded by the Western Australian State government. This research made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com . Facilities: Murchison Widefield Array , Ooty Radio Telescope .

[1]  A. R. Whitney,et al.  The High Time and Frequency Resolution Capabilities of the Murchison Widefield Array , 2015, Publications of the Astronomical Society of Australia.

[2]  W. A. Coles,et al.  Broadband meter‐wavelength observations of ionospheric scintillation , 2014, 1511.00937.

[3]  P. K. Manoharan,et al.  Determination of solar-wind velocities using single-station measurements of interplanetary scintillation , 1990 .

[4]  B. Jackson,et al.  Heliospheric tomography using interplanetary scintillation observations. 1. Combined Nagoya and Cambridge data , 1998 .

[5]  Christopher L. Williams,et al.  LOW-FREQUENCY IMAGING OF FIELDS AT HIGH GALACTIC LATITUDE WITH THE MURCHISON WIDEFIELD ARRAY 32 ELEMENT PROTOTYPE , 2012, 1203.5790.

[6]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[7]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[8]  Roberto Ricci,et al.  The Australia Telescope 20 GHz Survey: the source catalogue , 2009, 0911.0002.

[9]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[10]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[11]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[12]  M. Tokumaru,et al.  Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000 , 2003 .

[13]  P. K. Manoharan,et al.  Radial Evolution and Turbulence Characteristics of a Coronal Mass Ejection , 2000, The Astrophysical Journal.

[14]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[15]  J. Armstrong,et al.  Interplanetary scintillations of PSR 0531+21 at 74 MHz , 1978 .

[16]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[17]  A. R. Whitney,et al.  A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz , 2013, 1311.2989.

[18]  B. Rickett Refractive interstellar scintillation of radio sources , 1986 .

[19]  C. R. Subrahmanya,et al.  The Molonglo reference catalog/1 Jansky radio source survey. I. Radio galaxy identifications , 1996 .

[20]  J. Cordes,et al.  Diffractive Interstellar Scintillation Timescales and Velocities , 1998 .

[21]  L. T. Little,et al.  RADIO SOURCE STRUCTURE DERIVED FROM INTERPLANETARY SCINTILLATION. , 1968 .

[22]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[23]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[24]  E. Robbrecht,et al.  AUTOMATED LASCO CME CATALOG FOR SOLAR CYCLE 23: ARE CMEs SCALE INVARIANT? , 2008, 0810.1252.

[25]  A. Hewish,et al.  Interplanetary Scintillation of Small Diameter Radio Sources , 1964, Nature.

[26]  Anthony C. S. Readhead,et al.  Equipartition brightness temperature and the inverse Compton catastrophe , 1994 .

[27]  Roger Cappallo,et al.  The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees , 2014, Publications of the Astronomical Society of Australia.

[28]  R. Ekers,et al.  The AT20G high-angular-resolution catalogue , 2013, 1306.0990.