Kernelization Using Structural Parameters on Sparse Graph Classes

We prove that graph problems with finite integer index have linear kernels on graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For nowhere dense graph classes, our result yields almost-linear kernels. We also argue that such a linear kernelization result with a weaker parameter would fail to include some of the problems covered by our framework. We only require the problems to have FII on graphs of constant treedepth. This allows to prove linear kernels also for problems such as Longest-Path/Cycle, Exact- s , t -Path, Treewidth, and Pathwidth, which do not have FII on general graphs. Meta-theorems for linear kernels have been the subject of intensive research.We follow the line toward even larger graph classes using stronger parametrization.FII problems have linear kernels on graphs of bounded expansion, parameterized by the size of a treedepth-modulator.For nowhere dense classes, this yields almost-linear kernels.FII is required only on graphs of bounded treedepth.

[1]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[2]  Stephan Kreutzer,et al.  Kernelization and Sparseness: the case of Dominating Set , 2014, STACS.

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  David R. Wood,et al.  On the Maximum Number of Cliques in a Graph , 2006, Graphs Comb..

[5]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation and Optimal FPT Algorithms , 2012, ArXiv.

[6]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[7]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[8]  Noga Alon,et al.  Color-coding , 1995, JACM.

[9]  Jirí Fiala,et al.  Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..

[10]  Daniel Král,et al.  Algorithms for Classes of Graphs with Bounded Expansion , 2009, WG.

[11]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Jaroslav Nesetril,et al.  Characterisations and examples of graph classes with bounded expansion , 2009, Eur. J. Comb..

[13]  Stefan Kratsch,et al.  Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.

[14]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[15]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[16]  Ton Kloks,et al.  Better Algorithms for the Pathwidth and Treewidth of Graphs , 1991, ICALP.

[17]  B. D. Fluiter Algorithms for graphs of small treewidth , 1997 .

[18]  Bert Gerards,et al.  On the excluded minors for the matroids of branch-width k , 2003, J. Comb. Theory, Ser. B.

[19]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[20]  J. Nesetril,et al.  Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.

[21]  Illya V. Hicks,et al.  The branchwidth of graphs and their cycle matroids , 2007, J. Comb. Theory, Ser. B.

[22]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[23]  Frank Harary,et al.  Graph Theory , 2016 .

[24]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[25]  Jan Kratochvíl,et al.  Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width , 2012, MFCS.

[26]  Stefan Kratsch,et al.  On Polynomial Kernels for Structural Parameterizations of Odd Cycle Transversal , 2011, IPEC.

[27]  Robert Ganian,et al.  Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics , 2011, IPEC.

[28]  Fedor V. Fomin,et al.  Hitting Forbidden Minors: Approximation and Kernelization , 2010, SIAM J. Discret. Math..

[29]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[30]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[31]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[32]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[33]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[34]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[35]  Michael R. Fellows,et al.  Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity , 2013, Eur. J. Comb..

[36]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[37]  Hans L. Bodlaender,et al.  Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.

[38]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[39]  Michal Pilipczuk,et al.  On the Hardness of Losing Width , 2011, Theory of Computing Systems.

[40]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[41]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[42]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[43]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[44]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[45]  Michal Pilipczuk,et al.  On Cutwidth Parameterized by Vertex Cover , 2012, Algorithmica.

[46]  Stefan Kratsch,et al.  Kernel bounds for path and cycle problems , 2011, Theor. Comput. Sci..

[47]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[48]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[49]  Michal Pilipczuk,et al.  Preprocessing subgraph and minor problems: When does a small vertex cover help? , 2012, J. Comput. Syst. Sci..