Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

[1]  Brian C. Thomas,et al.  Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations , 2017, Environmental microbiology.

[2]  M. Taga,et al.  Decoding molecular interactions in microbial communities. , 2016, FEMS microbiology reviews.

[3]  Jillian F Banfield,et al.  Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes. , 2016, Trends in microbiology.

[4]  Patrick D. Schloss,et al.  Status of the Archaeal and Bacterial Census: an Update , 2016, mBio.

[5]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[6]  Eoin L. Brodie,et al.  Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer , 2016, The ISME Journal.

[7]  Alexander J. Probst,et al.  Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum , 2016, PeerJ.

[8]  Brian C. Thomas,et al.  Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. , 2016, Environmental microbiology.

[9]  Joanne K. Liu,et al.  Networks of energetic and metabolic interactions define dynamics in microbial communities , 2015, Proceedings of the National Academy of Sciences.

[10]  Jay T. Lennon,et al.  Microbiomes in light of traits: A phylogenetic perspective , 2015, Science.

[11]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[12]  Alexander Heuwieser,et al.  Interaction networks for identifying coupled molecular processes in microbial communities , 2015, BioData Mining.

[13]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[14]  M. Lynch,et al.  Ecology and exploration of the rare biosphere , 2015, Nature Reviews Microbiology.

[15]  Kenneth H. Williams,et al.  Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling , 2015, Current Biology.

[16]  K. Williams,et al.  Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points. , 2015, Environmental microbiology.

[17]  Brian C. Thomas,et al.  Diverse uncultivated ultra-small bacterial cells in groundwater , 2015, Nature Communications.

[18]  Brian C. Thomas,et al.  Accurate, multi-kb reads resolve complex populations and detect rare microorganisms , 2015, Genome research.

[19]  S. Hallin,et al.  Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions , 2014, PloS one.

[20]  D. Roberts,et al.  Potential Disruption of Pollination in a Sexually Deceptive Orchid by Climatic Change , 2014, Current Biology.

[21]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[22]  K. Schleifer,et al.  Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences , 2014, Nature Reviews Microbiology.

[23]  Itai Sharon,et al.  Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer , 2014, The ISME Journal.

[24]  Karthik Anantharaman,et al.  Sulfur Oxidation Genes in Diverse Deep-Sea Viruses , 2014, Science.

[25]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[26]  J. Parnell,et al.  Weighing the deep continental biosphere. , 2014, FEMS microbiology ecology.

[27]  Brian C. Thomas,et al.  Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla , 2013, mBio.

[28]  Kenneth H. Williams,et al.  Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment , 2013, Nature Communications.

[29]  Brian C. Thomas,et al.  Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling , 2013, Microbiome.

[30]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[31]  Christopher S. Miller,et al.  Fluctuations in Species-Level Protein Expression Occur during Element and Nutrient Cycling in the Subsurface , 2013, PloS one.

[32]  Brian C. Thomas,et al.  Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization , 2013, Genome research.

[33]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[34]  David C. Smith,et al.  Global distribution of microbial abundance and biomass in subseafloor sediment , 2012, Proceedings of the National Academy of Sciences.

[35]  Nicholas J. Bouskill,et al.  Trait-Based Representation of Biological Nitrification: Model Development, Testing, and Predicted Community Composition , 2012, Front. Microbio..

[36]  M. Kuypers,et al.  Nitrite oxidation in the Namibian oxygen minimum zone , 2011, The ISME Journal.

[37]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[38]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[39]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  L. Bakken,et al.  Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. , 2012, FEMS microbiology ecology.

[42]  Peter Williams,et al.  IMG: the integrated microbial genomes database and comparative analysis system , 2011, Nucleic Acids Res..

[43]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[44]  James A. Davis,et al.  Acetate Availability and its Influence on Sustainable Bioremediation of Uranium-Contaminated Groundwater , 2011 .

[45]  Brian C. Thomas,et al.  EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data , 2011, Genome Biology.

[46]  J. Lennon,et al.  Microbial seed banks: the ecological and evolutionary implications of dormancy , 2011, Nature Reviews Microbiology.

[47]  Daniel Segrè,et al.  Environments that Induce Synthetic Microbial Ecosystems , 2010, PLoS Comput. Biol..

[48]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[49]  Daniel R Zerbino,et al.  Using the Velvet de novo Assembler for Short‐Read Sequencing Technologies , 2010, Current protocols in bioinformatics.

[50]  E. Delong,et al.  Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea , 2010, Proceedings of the National Academy of Sciences.

[51]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[52]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[53]  Souichiro Kato,et al.  Intertwined interspecies relationships: approaches to untangle the microbial network. , 2009, Environmental microbiology.

[54]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[55]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[56]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[57]  Cristian Picioreanu,et al.  Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. , 2008, Environmental science & technology.

[58]  Peer Bork,et al.  Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer , 2007, Science.

[59]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[60]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[61]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[62]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[63]  D. Brune,et al.  Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum , 2006, Molecular microbiology.

[64]  Hiroaki Kitano,et al.  The PANTHER database of protein families, subfamilies, functions and pathways , 2004, Nucleic Acids Res..

[65]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[66]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[67]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[68]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[69]  J. V. Van Beeumen,et al.  The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. , 1994, Science.

[70]  E. Padan,et al.  Sulfide quinone reductase (SQR) activity in Chlorobium , 1992, FEBS letters.