Near-Zero Thermal Expansion and Phase Transitions in HfMg1−xZnxMo3O12

The effects of Zn2+ incorporation on the phase formation, thermal expansion, phase transition, and vibrational properties of HfMg1−xZnxMo3O12 are investigated by XRD, dilatometry, and Raman spectroscopy. The results show that (i) single phase formation is only possible for x ≤ 0.5, otherwise, additional phases of HfMo2O8 and ZnMoO4 appear; (ii) The phase transition temperature from monoclinic to orthorhombic structure of the single phase HfMg1−xZnxMo3O12 can be well-tailored, which increases with the content of Zn2+; (iii) The incorporation of Zn2+ leads to an pronounced reduction in the positive expansion of the b-axis and an enhanced negative thermal expansion (NTE) in the c-axes, leading to a near-zero thermal expansion (ZTE) property with lower anisotropy over a wide temperature range; (iv) Replacement of Mg2+ by Zn2+ weakens the Mo–O bonds as revealed by obvious red shifts of all the Mo–O stretching modes with increasing the content of Zn2+ and improves the sintering performance of the samples which is observed by SEM. The mechanisms of the negative and near-ZTE are discussed.

[1]  B. Cornils hydrothermal synthesis , 2020, Catalysis from A to Z.

[2]  E. Liang,et al.  Phase transition and negative thermal expansion of HfMnMo 3 O 12 , 2018 .

[3]  Tao Li,et al.  Zero and controllable thermal expansion in , 2017 .

[4]  E. Liang,et al.  A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence , 2017 .

[5]  Yu Jia,et al.  Phase transition and near-zero thermal expansion in ZrFeMo 2 VO 12 , 2016 .

[6]  Tao Li,et al.  Enhanced negative thermal expansion by solid solution of HfMgMo1.5W1.5O12 , 2016 .

[7]  Xiansheng Liu,et al.  Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12 , 2016 .

[8]  E. Liang,et al.  Near-zero thermal expansion of In2(1−x)(HfMg) x Mo3O12 with tailored phase transition* , 2016 .

[9]  Xiansheng Liu,et al.  A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission , 2016 .

[10]  Nana Yuan,et al.  Phase Transition and Negative Thermal Expansion Property of ZrMnMo3O12 , 2016 .

[11]  Xiansheng Liu,et al.  Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12 , 2016, Scientific Reports.

[12]  J. Deng,et al.  Structure and control of negative thermal expansion of Nd/Sm substituted 0.5PbTiO3–0.5BiFeO3 ferroelectrics , 2016 .

[13]  M. Zbair,et al.  Structural and Temperature-dependent vibrational analyses of the non-centrosymmetric ZnMoO 4 molybdate , 2016 .

[14]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[15]  Wenbo Song,et al.  Control of Reaction Pathways for Rapid Synthesis of Negative Thermal Expansion Ceramic Zr2P2WO12 with Uniform Microstructure , 2015 .

[16]  Xiansheng Liu,et al.  Electrical properties of Al–ZrMgMo3O12 with controllable thermal expansion , 2015 .

[17]  J. Deng,et al.  Zero Thermal Expansion and Ferromagnetism in Cubic Sc1-xMxF3 (M: Ga, Fe) over a Wide Temperature Range. , 2015 .

[18]  Wenbo Song,et al.  Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O) , 2014 .

[19]  M. Mizumaki,et al.  Valence transitions in negative thermal expansion material SrCu₃Fe₄O₁₂. , 2014, Inorganic chemistry.

[20]  Dongfeng Chen,et al.  Structure, phase transition, and controllable thermal expansion behaviors of Sc(2-x)Fe(x)Mo₃O₁₂. , 2014, Inorganic chemistry.

[21]  Lihua Chu,et al.  Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature , 2014 .

[22]  Xiansheng Liu,et al.  Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping. , 2014, Physical chemistry chemical physics : PCCP.

[23]  L. Barbour,et al.  A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF. , 2014, Chemical communications.

[24]  Wenbo Song,et al.  Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe_2Mo_3O_12 by substitutional co-incorporation of Zr^4+ and Mg^2+ , 2014 .

[25]  Wenbo Song,et al.  Phase transition and thermal expansion property of Cr2−xZr0.5xMg0.5xMo3O12 solid solution , 2014 .

[26]  Z. Peng,et al.  Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients , 2014 .

[27]  P. Juhás,et al.  Local vibrations and negative thermal expansion in ZrW2O8. , 2014, Physical review letters.

[28]  Li Zhi-Yuan,et al.  A Negative Thermal Expansion Material of ZrMgMo3O12 , 2013 .

[29]  J. Deng,et al.  Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range , 2013, Scientific Reports.

[30]  John S. O. Evans,et al.  Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8. , 2013, Journal of the American Chemical Society.

[31]  Qiang Sun,et al.  Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12 , 2013 .

[32]  M. White,et al.  Near‐Zero Thermal Expansion in In(HfMg)0.5Mo3O12 , 2013 .

[33]  Meifen Wu,et al.  Phase transition and negative thermal expansion properties of Sc2−xCrxMo3O12 , 2012 .

[34]  B. Pan,et al.  Origin of the Giant Negative Thermal Expansion in , 2012 .

[35]  Michel B. Johnson,et al.  Low-temperature investigations of the open-framework material HfMgMo3O12 , 2012 .

[36]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[37]  Y. Zenitani,et al.  High Ion Conductivity in MgHf(WO4)3 Solids with Ordered Structure: 1-D Alignments of Mg2+ and Hf4+ Ions , 2011 .

[38]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[39]  J. Deng,et al.  Phase transformation and negative thermal expansion in TaVO5. , 2011, Inorganic chemistry.

[40]  M. Azuma,et al.  Intermetallic charge transfer in A-site-ordered double perovskite BiCu3Fe4O12. , 2009, Inorganic chemistry.

[41]  Michel B. Johnson,et al.  Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials , 2009 .

[42]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.

[43]  Xiaoling Xiao,et al.  Controllable thermal expansion and phase transition in Yb2−xCrxMo3O12 , 2009 .

[44]  Yi-jian Jiang,et al.  Low-frequency phonon modes and negative thermal expansion in A(MO(4))(2) (A = Zr, Hf and M = W, Mo) by Raman and Terahertz time-domain spectroscopy. , 2008, The journal of physical chemistry. A.

[45]  F. Ferreira,et al.  Low positive thermal expansion in HfMgMo3O12 , 2008 .

[46]  Yu Jia,et al.  Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2 , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  A. Gindhart,et al.  Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .

[48]  Junping Wang,et al.  Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .

[49]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[50]  Juan-Yu Yang,et al.  Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion , 2007 .

[51]  A. Omote,et al.  Zero Thermal Expansion in (Al2x(HfMg)1−x)(WO4)3 , 2006 .

[52]  Joseph N. Grima,et al.  Negative thermal expansion , 2006 .

[53]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[54]  A. Omote,et al.  Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .

[55]  J. S. Evans,et al.  Structures and phase transitions of trigonal ZrMo2O8 and HfMo2O8. , 2004, Acta crystallographica. Section B, Structural science.

[56]  John S. O. Evans,et al.  Negative Thermal Expansion Materials , 2004 .

[57]  T. Weber,et al.  Mischkristallbildung im System CuMoO4/ZnMoO4 , 2000 .

[58]  John S. O. Evans,et al.  Negative Thermal Expansion in a Large Molybdate and Tungstate Family , 1997 .

[59]  Z. Hu,et al.  Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.

[60]  John S. O. Evans,et al.  Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .

[61]  V. Heine,et al.  Origin of the negative thermal expansion in and , 1996 .

[62]  Julian D Gale,et al.  Origin of the negative thermal expansion in and , 1996 .

[63]  E. Subbarao,et al.  Thermal expansion anisotropy, microcracking and acoustic emission of Nb2O5 ceramics , 1992 .