Entanglement-Assisted Quantum Codes From Algebraic Geometry Codes

Quantum error correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quantum error correcting codes to achieve higher rates than the one obtained via traditional stabilizer formalism. Such codes are called entanglement-assisted quantum (QUENTA) codes. In this paper, we use algebraic geometry codes to construct several families of QUENTA codes via Euclidean and Hermitian construction. Two of the families created has maximal entanglement and have quantum Singleton defect equal to zero or one. Comparing the other families with the codes with the respective quantum Gilbert-Varshamov bound, we show that our codes have a rate that surpasses such bound. In the end, asymptotically good tower of linear complementary dual codes is used to obtain an asymptotically good family of maximal entanglement QUENTA codes with nonzero rate, relative minimal distance, and relative entanglement. Furthermore, a simple comparison with the quantum Gilbert-Varshamov bound demonstrates that from our construction it is possible to create an asymptotically family of QUENTA codes that exceed such this bound.

[1]  Mark M. Wilde,et al.  Dualities and identities for entanglement-assisted quantum codes , 2010, Quantum Information Processing.

[2]  Xiusheng Liu,et al.  New entanglement-assisted quantum codes from k-Galois dual codes , 2019, Finite Fields Their Appl..

[3]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.

[4]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[5]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[8]  Xiaojing Chen,et al.  Entanglement-assisted quantum MDS codes constructed from constacyclic codes , 2018, Quantum Inf. Process..

[9]  T. Aaron Gulliver,et al.  Linear $$\ell $$ℓ-intersection pairs of codes and their applications , 2018, Des. Codes Cryptogr..

[10]  Ruihu Li,et al.  Entanglement-assisted quantum codes from quaternary codes of dimension five , 2017 .

[11]  T. Aaron Gulliver,et al.  Constructions of good entanglement-assisted quantum error correcting codes , 2016, Designs, Codes and Cryptography.

[12]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[13]  Alfred Menezes,et al.  Elliptic curve public key cryptosystems , 1993, The Kluwer international series in engineering and computer science.

[14]  Qiang Fu,et al.  Maximal entanglement entanglement-assisted quantum codes constructed from linear codes , 2015, Quantum Inf. Process..

[15]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[16]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[17]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[18]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[19]  Riqing Chen,et al.  Entanglement-assisted quantum MDS codes constructed from negacyclic codes , 2017, Quantum Information Processing.

[20]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[21]  Xiusheng Liu,et al.  Entanglement-assisted quantum codes from Galois LCD codes , 2018, ArXiv.

[22]  Carlos Galindo,et al.  Entanglement-assisted quantum error-correcting codes over arbitrary finite fields , 2018, Quantum Information Processing.

[23]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[24]  Ruud Pellikaan,et al.  Equality of geometric Goppa codes and equivalence of divisors , 1993 .

[25]  Isaac L. Chuang,et al.  Entanglement in the stabilizer formalism , 2004 .

[26]  Zongben Xu,et al.  Entanglement-assisted quantum codes achieving the quantum singleton bound but violating the quantum hamming bound , 2014, Quantum Inf. Comput..

[27]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[28]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[29]  Yang Liu,et al.  Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance , 2018, Finite Fields Their Appl..

[30]  Hanwu Chen,et al.  Constructions of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q+1 , 2016, Quantum Inf. Comput..