An energy-driven approach to linkage unfolding
暂无分享,去创建一个
Erik D. Demaine | James F. O'Brien | Hayley N. Iben | Jason H. Cantarella | E. Demaine | J. F. O'Brien | James F. O'Brien
[1] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[2] Ileana Streinu,et al. A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[3] Jason H. Cantarella,et al. NONTRIVIAL EMBEDDINGS OF POLYGONAL INTERVALS AND UNKNOTS IN 3-SPACE , 1998 .
[4] Yuanan Diao,et al. Properties of Knot Energies , 1998 .
[5] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[6] Stuart G. Whittington,et al. Topology and geometry in polymer science , 1998 .
[7] Günter Rote,et al. The complexity of (un)folding , 2003, SCG '03.
[8] Santosh S. Vempala,et al. Solving convex programs by random walks , 2002, STOC '02.
[9] Joseph O'Rourke,et al. Polygonal chains cannot lock in 4d , 1999, CCCG.
[10] Aaron Abrams,et al. Circles minimize most knot energies , 2001 .
[11] Erik D. Demaine,et al. Locked and Unlocked Polygonal Chains in Three Dimensions , 2001, Discret. Comput. Geom..
[12] Lükő Gábor,et al. On the mean length of the chords of a closed curve , 1966 .
[13] Günter Rote,et al. Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.