Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design

[1]  Eduardo Gallego,et al.  Transactions of the American Nuclear Society , 2009 .

[2]  Weiju Ren,et al.  A Review Paper on Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications , 2009 .

[3]  E. Lara‐Curzio,et al.  Creep Strength and Microstructure of AL20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recuperators , 2007 .

[4]  John P. Shingledecker,et al.  Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat Exchangers , 2006 .

[5]  R. L. Pierres,et al.  Heat Exchangers for the Next Generation of Nuclear Reactors , 2006 .

[6]  E. A. Harvego,et al.  Evaluation of Next Generation Nuclear Power Plant (NGNP) Intermediate Heat Exchanger (IHX) Operating Conditions , 2006 .

[7]  P. Lett,et al.  High temperature corrosion of structural materials under gas‐cooled reactor helium , 2006 .

[8]  Weiju Ren,et al.  Assessment of Existing Alloy 617 Data for Gen IV Materials Handbook , 2005 .

[9]  T. M. Lillo,et al.  Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs , 2005 .

[10]  D. Wilson,et al.  Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor , 2005 .

[11]  W. Ren Development of a Controlled Material Specification for Alloy 617 for Nuclear Applications , 2005 .

[12]  R. Swindeman,et al.  Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants , 2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference.

[13]  R. Swindeman,et al.  Creep strength of High-Temperature Alloys for Ultrasupercritical Steam Boilers , 2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference.

[14]  Anton Moisseytsev,et al.  Passive load follow analysis of the STAR-LM and STAR-H2 systems. , 2004 .

[15]  D. Allen,et al.  Creep rupture and ductility of as-manufactured and service-aged nickel alloy IN617 materials and welds , 2004 .

[16]  B. Ilschner,et al.  The thermal fatigue behavior of the combustor alloys In 617 and HAYNES 230 before and after welding , 1999 .

[17]  C. E. Jordan,et al.  Thermal stability of high temperature structural alloys , 1999 .

[18]  G. D. Smith,et al.  Performance of Inconel Alloy 617 in Actual and Simulated Gas Turbine Environments , 1995 .

[19]  Robert J. Klova,et al.  Upgrading a Power Turbine Stator for Greater Creep Life, Incorporating a Material Change to Haynes 230 , 1993 .

[20]  H. M. Tawancy High temperature creep behaviour of an Ni-Cr-W-B alloy , 1992, Journal of Materials Science.

[21]  S. Hsu The effects of fatigue, hold time and creep on crack growth in high temperature environments—NiCrCo alloy , 1991 .

[22]  D. Klarstrom,et al.  The LCF Behavior of Several Solid Solution Strengthened Alloys Used in Gas Turbine Engines , 1990 .

[23]  L. W. Graham Corrosion of metallic materials in HTR-helium environments , 1990 .

[24]  B. Huchtemann The effect of alloy chemistry on creep behaviour in a helium environment with low oxygen partial pressure , 1989 .

[25]  H. McCoy,et al.  Mechanical properties of Inconel 617 and 618 , 1985 .

[26]  C. R. Brinkman,et al.  High-temperature time-dependent fatigue behaviour of several engineering structural alloys , 1985 .

[27]  P. J. Ennis,et al.  Effect of carburizing service environments on the mechanical properties of high-temperature alloys , 1984 .

[28]  K. Lee Creep Rupture Properties of Hastelloy-X and lncoloy-800H in a Simulated HTGR Helium Environment Containing High Levels of Moisture , 1984 .

[29]  R. Cook,et al.  Creep rupture behavior of candidate materials for nuclear process heat applications , 1984 .

[30]  R. H. Cook Creep Properties of lnconel-617 in Air and Helium at 800 to 1000°C , 1984 .

[31]  H. Schuster,et al.  Investigations on the fatigue behavior of high-temperature alloys for high-temperature gas-cooled reactor components , 1984 .

[32]  T. Kondo,et al.  Creep and rupture behavior of a special grade Hastelloy-X in simulated HTGR helium , 1984 .

[33]  T. Kondo,et al.  Low-Cycle Fatigue of Heat-Resistant Alloys in High-Temperature Gas-Cooled Reactor Helium , 1984 .

[34]  T. Shikama,et al.  Creep rupture properties of superalloys developed for nuclear steelmaking , 1984 .

[35]  E. Bodmann,et al.  Fracture Mechanics Investigations on High-Temperature Gas-Cooled Reactor Materials , 1984 .

[36]  P. Ennis,et al.  Tensile and impact properties of candidate alloys for high-temperature gas-cooled reactor applications , 1984 .

[37]  J. Sannier,et al.  Behavior of Metallic Materials Between 550 and 870°C in High-Temperature Gas-Cooled Reactor Helium Under Pressures of 2 and 50 bar , 1984 .

[38]  B. Ilschner,et al.  Creep behavior of materials for high-temperature reactor application , 1984 .

[39]  T. Nakanishi,et al.  Creep Properties of Hastelloy-X in Impure Helium Environments , 1984 .

[40]  H. Bates The Corrosion Behavior of High-Temperature Alloys During Exposure for Times up to 10 000 h in Prototype Nuclear Process Helium at 700 to 900°C , 1984 .

[41]  H. Nickel,et al.  Creep and Relaxation Behavior of lnconel-617 , 1984 .

[42]  H. Nickel,et al.  Precipitation Behavior of Ni-Cr-22 Fe-18 Mo (Hastelloy-X) and Ni-Cr-22 Co-12 Mo (Inconel-617) After Isothermal Aging , 1984 .

[43]  E. Bodmann,et al.  Status of design code work in Germany concerning materials and structural aspects for the heat exchanger components of advanced HTR's , 1983 .

[44]  M. Booker,et al.  Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617 , 1982 .

[45]  G. Lai,et al.  Interaction of metals with primary coolant impurities: comparison of steam-cycle and advanced HTGRs , 1981 .

[46]  Akira Ohtomo,et al.  Morphological changes of carbides during creep and their effects on the creep properties of inconel 617 at 1000 °C , 1980 .

[47]  J. Chow,et al.  Correlation of high- and low-cycle fatigue data for Incoloy-800H. [70 to 1400/sup 0/F, stress-strain] , 1976 .

[48]  W. Mankins,et al.  Microstructure and phase stability of INCONEL alloy 617 , 1974, Metallurgical and Materials Transactions B.

[49]  R. Taylor,et al.  Creep and relaxation , 1964 .

[50]  A. London,et al.  Compact heat exchangers , 1960 .

[51]  David A. Petti,et al.  The Next Generation Nuclear Plant , 2009 .

[52]  W. Ren,et al.  A Review of Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications , 2006 .

[53]  U. S. Doe A Technology Roadmap for Generation IV Nuclear Energy Systems , 2002 .

[54]  Colin F. McDonald,et al.  Compact buffer zone plate-fin IHX—The key component for high-temperature nuclear process heat realization with advanced MHR , 1996 .

[55]  J. Nilsson,et al.  Influence of temperature and microstructure on creep-fatigue of Alloy 800H , 1988 .

[56]  Elihu F. Bradley,et al.  Superalloys: a technical guide , 1988 .

[57]  D. Roberts Design codes and lifetime prediction aspects for Alloy 800 for nuclear and non-nuclear applications , 1978 .

[58]  L. Epel,et al.  Creep and fatigue properties of Incoloy 800H in a high-temperature gas-cooled reactor (HTGR) helium environment , 1978 .

[59]  G. Reynolds,et al.  Effects of thermal aging on the microstructure and mechanical properties of a commercial Ni-Cr-Co-Mo alloy (inconel 617) , 1976 .