Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable novel quantum operations on the two modes, including laser cooling of the microwave mode, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to a cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up-converted to "flying" optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

[1]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[2]  Schumaker,et al.  New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. , 1985, Physical review. A, General physics.

[3]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[4]  Jeffrey H. Shapiro,et al.  Semiclassical versus quantum behavior in fourth-order interference , 1994 .

[5]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[6]  S. Barnett,et al.  Quantum optics of lossy beam splitters , 1998 .

[7]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[8]  Mani Hossein-Zadeh,et al.  Microphotonic modulator for microwave receiver , 2001 .

[9]  A. Levi,et al.  Microphotonic components for a mm-wave receiver , 2001 .

[10]  A. F. J. Levi,et al.  Microphotonic millimetre-wave receiver architecture , 2001 .

[11]  Mani Hossein-Zadeh,et al.  High-Q microphotonic electro-optic modulator , 2001 .

[12]  Vladimir S. Ilchenko,et al.  Whispering-gallery-mode electro-optic modulator and photonic microwave receiver , 2003 .

[13]  Jeffrey H. Shapiro,et al.  Quantum Gaussian noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[14]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[15]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[16]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[17]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[18]  A. Matsko,et al.  On fundamental quantum noises of whispering gallery mode electro-optic modulators. , 2007, Optics express.

[19]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[20]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[21]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[22]  A. Matsko,et al.  Tunable optical single-sideband modulator with complete sideband suppression. , 2009, Optics letters.

[23]  Saikat Guha,et al.  Gaussian-state quantum-illumination receivers for target detection , 2009, 0911.0950.

[24]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[25]  C. Regal,et al.  From cavity electromechanics to cavity optomechanics , 2010, 1010.4056.

[26]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[27]  Joachim Knittel,et al.  Cooling and control of a cavity optoelectromechanical system. , 2009, Physical review letters.

[28]  L. Tian,et al.  Optical wavelength conversion of quantum states with optomechanics , 2010, 1007.1687.

[29]  A. Matsko,et al.  Single-Sideband Electro-Optical Modulator and Tunable Microwave Photonic Receiver , 2010, IEEE Transactions on Microwave Theory and Techniques.

[30]  Stefano Pirandola,et al.  Quantum Reading of a Classical Digital Memory , 2011, Physical review letters.

[31]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.