Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

[1]  Joanna Austin,et al.  Heat Transfer on a Double Wedge Geometry in Hypervelocity Air and Nitrogen Flows , 2012 .

[2]  A. Panaras,et al.  Review of the physics of swept-shock/boundary layer interactions , 1996 .

[3]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[4]  I. Nompelis Computational study of hypersonic double-cone experiments for code validation , 2004 .

[5]  Raffaele Donelli,et al.  Computational Analysis of Shock Wave Boundary Layer Interactions in Non-equilibrium Hypersonic Flow , 2015 .

[6]  Mark Gruber,et al.  Mach 6–8+ Hydrocarbon-Fueled Scramjet Flight Experiment: The HIFiRE Flight 2 Project , 2015 .

[7]  Gérard Degrez,et al.  Transport properties of partially ionized and unmagnetized plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Johan Steelant,et al.  Aerodynamic Design Analysis of the HEXAFLY-INT Hypersonic Glider , 2015 .

[9]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[10]  Steven Walker,et al.  Falcon Hypersonic Technology Overview , 2005 .

[11]  José M. A. Longo Present Results and Future Challenges of the DLR SHEFEX Program , 2009 .

[12]  David S. Dolling,et al.  Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? , 2001 .

[13]  A. S. Durna,et al.  Shock interaction mechanisms on a double wedge at Mach 7 , 2016 .

[14]  Claus Borgnakke,et al.  Statistical collision model for Monte Carlo simulation of polyatomic gas mixture , 1975 .

[15]  J.M.A. Longo,et al.  Assessment of CFD capability for prediction of hypersonic shock interactions , 2012 .

[16]  Graham V. Candler,et al.  Numerical investigation of unsteady heat transfer on a double wedge geometry in hypervelocity flows , 2014 .

[17]  Andrea Lani,et al.  A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach , 2011, J. Comput. Phys..

[18]  Chul Park,et al.  Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen , 1986 .

[19]  K. O. W. Ball Flap span effects on boundary-layer separation , 1971 .

[20]  J. G. Parker Rotational and Vibrational Relaxation in Diatomic Gases , 1959 .

[21]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[22]  J. Green Interactions between shock waves and turbulent boundary layers , 1970 .

[23]  Richard E. Brown,et al.  Validation of tools to accelerate high-speed CFD simulations using OpenFOAM , 2015 .

[24]  Andrea Lani,et al.  Modelling of high-enthalpy, high-Mach number flows , 2009 .

[25]  Graham V. Candler,et al.  Data-parallel lower-upper relaxation method for the navier-stokes equations , 1996 .

[26]  Andrea Lani,et al.  The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software , 2005, International Conference on Computational Science.

[27]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[28]  M. Liou A Sequel to AUSM , 1996 .

[29]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[30]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[31]  G. Degrez,et al.  Numerical Simulation of Multi‐Component Inductive Plasma Flows under Chemical Non‐Equilibrium , 1999 .

[32]  Meng-Sing Liou,et al.  A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities(Proceedings of the 12th NAL Symposium on Aircraft Computational Aerodynamics) , 1994 .

[33]  Jean Delery,et al.  Shock wave/turbulent boundary layer interaction and its control , 1985 .

[34]  Johan Steelant,et al.  Conceptual Design of the High-Speed Propelled Experimental Flight Test Vehicle HEXAFLY , 2015 .

[35]  Joanna Austin,et al.  Design and Characterization of a Hypervelocity Expansion Tube Facility , 2007 .

[36]  A. Zheltovodov,et al.  SOME ADVANCES IN RESEARCH OF SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTIONS , 2006 .

[37]  Volker Hannemann,et al.  Numerical Investigation of Double-Cone and Cylinder Experiments in High Enthalpy Flows using the DLR TAU Code , 2010 .

[38]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[39]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[40]  Datta V. Gaitonde,et al.  Progress in shock wave/boundary layer interactions , 2013 .

[41]  S. V. Rogasinsky,et al.  Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics , 1988 .

[42]  Doyle Knight,et al.  Shock wave boundary layer interactions in high Mach number flows: A critical survey of current CFD prediction capabilities , 1998 .

[43]  Joanna Austin,et al.  Flowfield Establishment in Hypervelocity Shock-Wave/Boundary-Layer Interactions , 2015 .

[44]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[45]  Mikhail S. Ivanov,et al.  Statistical simulation of reactive rarefied flows - Numerical approach and applications , 1998 .

[46]  Chun Shen,et al.  Implementation of density-based solver for all speeds in the framework of OpenFOAM , 2014, Comput. Phys. Commun..

[47]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[48]  D. Knight,et al.  Advances in CFD prediction of shock wave turbulent boundary layer interactions , 2003 .

[49]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[50]  Andreas Mack,et al.  Chemical Non Equilibrium Model of the Martian Atmosphere , 2008 .

[51]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .