D2MOPSO: MOPSO Based on Decomposition and Dominance with Archiving Using Crowding Distance in Objective and Solution Spaces

This paper improves a recently developed multi-objective particle swarm optimizer () that incorporates dominance with decomposition used in the context of multi-objective optimization. Decomposition simplifies a multi-objective problem (MOP) by transforming it to a set of aggregation problems, whereas dominance plays a major role in building the leaders’ archive. introduces a new archiving technique that facilitates attaining better diversity and coverage in both objective and solution spaces. The improved method is evaluated on standard benchmarks including both constrained and unconstrained test problems, by comparing it with three state of the art multi-objective evolutionary algorithms: MOEA/D, OMOPSO, and dMOPSO. The comparison and analysis of the experimental results, supported by statistical tests, indicate that the proposed algorithm is highly competitive, efficient, and applicable to a wide range of multi-objective optimization problems.

[1]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[2]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[3]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[4]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[5]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Zhiwei Wang,et al.  Particle swarm optimization and neural network application for QSAR , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[8]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[9]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[10]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[11]  Michael N. Vrahatis,et al.  Multi-Objective Particles Swarm Optimization Approaches , 2008 .

[12]  John A. W. McCall,et al.  Clustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation , 2011, IDEAL.

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[15]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[16]  John A. W. McCall,et al.  D 2 MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance , 2012, EvoCOP.

[17]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[18]  Enrique Alba,et al.  AbYSS: Adapting Scatter Search to Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[20]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[21]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[22]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[23]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[24]  Riccardo Poli,et al.  Genetic and Evolutionary Computation , 2006, Intelligenza Artificiale.

[25]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[26]  Christian Fonteix,et al.  Multicriteria optimization using a genetic algorithm for determining a Pareto set , 1996, Int. J. Syst. Sci..

[27]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[28]  Jacek M. Zurada,et al.  Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.

[29]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[30]  John A. W. McCall,et al.  A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition , 2010, PPSN.

[31]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[32]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[33]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[34]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[35]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[36]  Ajith Abraham,et al.  An improved Multiobjective Evolutionary Algorithm based on decomposition with fuzzy dominance , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[37]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[38]  Qingfu Zhang,et al.  A decomposition-based multi-objective Particle Swarm Optimization algorithm for continuous optimization problems , 2008, 2008 IEEE International Conference on Granular Computing.

[39]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[40]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[41]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[42]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[43]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[44]  Bijaya Jaishi,et al.  Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique , 2007 .

[45]  Darrell G. Fontane,et al.  A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality , 2006 .

[46]  Saúl Zapotecas Martínez,et al.  A multi-objective particle swarm optimizer based on decomposition , 2011, GECCO '11.

[47]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.