Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons

Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed “spikelet”. Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.

[1]  G M Shepherd,et al.  Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. , 1997, Science.

[2]  A. Zador,et al.  Neural representation and the cortical code. , 2000, Annual review of neuroscience.

[3]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[4]  K. Rhodes,et al.  Localization of voltage-gated ion channels in mammalian brain. , 2004, Annual review of physiology.

[5]  Roman R Poznanski,et al.  Dendritic integration in a recurrent network. , 2002, Journal of integrative neuroscience.

[6]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[8]  Y. Zilberter Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex , 2000, The Journal of physiology.

[9]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[10]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[11]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[12]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[13]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[14]  J C Oakley,et al.  Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. , 2001, Journal of neurophysiology.

[15]  D. Tank,et al.  Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites , 1990, Nature.

[16]  W Rall,et al.  Changes of action potential shape and velocity for changing core conductor geometry. , 1974, Biophysical journal.

[17]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[18]  M. Larkum,et al.  Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. , 1998, Journal of neurophysiology.

[19]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[20]  B. Salzberg,et al.  Changes in ANS and TNS fluorescence in giant axons fromLoligo , 2005, The Journal of Membrane Biology.

[21]  L. Tauc,et al.  Site of Origin and Propagation of Spike in the Giant Neuron of Aplysia , 1962, The Journal of general physiology.

[22]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[23]  S. Antic,et al.  Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. , 1999, Journal of neurophysiology.

[24]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[25]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  S. Antic,et al.  Optical signals from neurons with internally applied voltage-sensitive dyes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Michele Migliore,et al.  Normalization of Ca 2 Signals by Small Oblique Dendrites of CA 1 Pyramidal Neurons , 2003 .

[28]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[29]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[30]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[31]  S Hochstein,et al.  Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. , 1976, Journal of neurophysiology.

[32]  L. Loew,et al.  Charge-shift probes of membrane potential. Synthesis , 1984 .

[33]  G. Salama,et al.  A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations , 1992, The Journal of Membrane Biology.

[34]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[35]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[36]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[37]  P. Goldman-Rakic,et al.  Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree , 2004, The Journal of physiology.

[38]  Wei R Chen,et al.  Voltage Imaging from Dendrites of Mitral Cells: EPSP Attenuation and Spike Trigger Zones , 2004, The Journal of Neuroscience.

[39]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[40]  J C Oakley,et al.  Initiation and propagation of regenerative Ca(2+)-dependent potentials in dendrites of layer 5 pyramidal neurons. , 2001, Journal of neurophysiology.

[41]  W. N. Ross,et al.  Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. , 1977, Journal of neurophysiology.

[42]  Yang Yang,et al.  Where Is the Spike Generator of the Cochlear Nerve? Voltage-Gated Sodium Channels in the Mouse Cochlea , 2005, The Journal of Neuroscience.

[43]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[44]  D. Fortin,et al.  Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex , 2004, The Journal of physiology.

[45]  M. Häusser,et al.  Differential shunting of EPSPs by action potentials. , 2001, Science.

[46]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[47]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[48]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[49]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[51]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[52]  J W Moore,et al.  Propagation of action potentials in inhomogeneous axon regions. , 1975, Federation proceedings.

[53]  P. Mackenzie,et al.  High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. , 1998, Journal of neurophysiology.

[54]  S. Antic,et al.  Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ , 2000, The Journal of physiology.

[55]  A Grinvald,et al.  Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. , 1987, Biophysical journal.

[56]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[57]  Michele Migliore,et al.  Normalization of Ca2+ Signals by Small Oblique Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[58]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[59]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[60]  M Steriade,et al.  Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. , 1993, Journal of neurophysiology.

[61]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[62]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[63]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[64]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[65]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[66]  Srdjan D Antic,et al.  A Strict Correlation between Dendritic and Somatic Plateau Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons , 2005, The Journal of Neuroscience.

[67]  J M Bekkers,et al.  Distribution and activation of voltage‐gated potassium channels in cell‐attached and outside‐out patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[68]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.