Thermodynamic considerations in the stability of binary oxides for alternative gate dielectrics in complementary metal-oxide-semiconductors

A number of binary oxides have been predicted to be thermodynamically stable in contact with Si and are candidates to replace SiO2 in complementary metal-oxide-semiconductors. However, reactions leading to the formation of interfacial silicide, silicate, or SiO2 layers have been reported when these oxides are exposed to high temperatures during device processing. Different pathways have been proposed in the literature to explain these reactions. In this article, a thermodynamic analysis of the proposed reactions is performed. The analysis includes gaseous species, because typical gate dielectrics are ultrathin layers and diffusivities for species from the surrounding atmosphere, such as oxygen, may be high. Furthermore, nonstoichiometry of the high-k oxide, as may be resulting from nonequilibrium deposition processes or reducing atmospheres during processing is also considered. Studies are proposed to distinguish between possible reaction mechanisms. Finally guidelines for stable interfaces are presented. (C) 2004 American Vacuum Society.

[1]  H. Osten,et al.  Epitaxial growth of Pr2O3 on Si(111) and the observation of a hexagonal to cubic phase transition during postgrowth N2 annealing , 2001 .

[2]  E. Cartier,et al.  Characterization of silicate/Si(001) interfaces , 2002 .

[3]  K. Barmak,et al.  A new model for grain boundary diffusion and nucleation in thin film reactions , 1994 .

[4]  H. Anderson,et al.  Raman Spectroscopy of Nanocrystalline Ceria and Zirconia Thin Films , 2004 .

[5]  A. Kingon,et al.  Stability of ZrO2 layers on Si (001) during high-temperature anneals under reduced oxygen partial pressures , 2002 .

[6]  Toshinori Mori,et al.  Specific Adsorption Behavior of Water on a Y2O3 Surface , 2000 .

[7]  Yet-Ming Chiang,et al.  Nonstoichiometry and Electrical Conductivity of Nanocrystalline CeO $${2 - x} $$ , 1997 .

[8]  M. Heyns,et al.  Crystallisation and Tetragonal-Monoclinic Transformation in ZrO2 and HfO2 Dielectric Thin Films , 2001 .

[9]  Donald R. Olander,et al.  Thermochemistry of the U-O and Zr-O systems , 1993 .

[10]  Reaction steps of silicidation in ZrO2/SiO2/Si layered structure , 2002 .

[11]  K. Saraswat,et al.  Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition , 2001 .

[12]  N. M. Tallan,et al.  Electrical Properties and Defect Structure of Y2O3 , 1966 .

[13]  Carlos G. Levi,et al.  Application of Metastable Phase Diagrams to Silicate Thin Films for Alternative Gate Dielectrics , 2003 .

[14]  A. Toriumi,et al.  Study on Zr-silicate interfacial layer of ZrO2 metal-insulator-semiconductor structure , 2002 .

[15]  Dmitri O. Klenov,et al.  Reactions of Y2O3 films with (001) Si substrates and with polycrystalline Si capping layers , 2002 .

[16]  A. Heuer,et al.  Solid-state diffusive amorphization in TiO2/ZrO2 bilayers , 1996 .

[17]  V. Narayanan,et al.  Lattice-matched, epitaxial, silicon-insulating lanthanum yttrium oxide heterostructures , 2002 .

[18]  John Wang,et al.  Hafnia and hafnia-toughened ceramics , 1992, Journal of Materials Science.

[19]  Douglas A. Buchanan,et al.  Interface reactions in ZrO2 based gate dielectric stacks , 2002 .

[20]  H. Seifert,et al.  Phase equilibria and thermodynamics in the Y2O3-Al2O3-SO2- system , 2001 .

[21]  Jane P. Chang,et al.  Thermal stability of stacked high-k dielectrics on silicon , 2001 .

[22]  Dim-Lee Kwong,et al.  Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) , 2001 .

[23]  A. Kingon,et al.  Structure and stability of La2O3/SiO2 layers on Si(001) , 2001 .

[24]  K. Saraswat,et al.  Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics , 2002 .

[25]  C. Wiemer,et al.  High epitaxial quality Y2O3 high-κ dielectric on vicinal Si(001) surfaces , 2002 .

[26]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[27]  G. Wilk,et al.  Thermal decomposition behavior of the HfO2/SiO2/Si system , 2003 .

[28]  H. Oonk,et al.  Liquid immiscibility in the SiO2+MgO, SiO2+SnO, SiO2+La2O3, and SiO2+Y2O3 systems , 1986 .

[29]  Howard R. Huff,et al.  Physicochemical properties of HfO2 in response to rapid thermal anneal , 2003 .

[30]  J. J. Lander,et al.  Low Voltage Electron Diffraction Study of the Oxidation and Reduction of Silicon , 1962 .

[31]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[32]  Structure and thermal stability of MOCVD ZrO2 films on Si (100) , 2003 .

[33]  Piero Pianetta,et al.  Interfacial properties of ZrO2 on silicon , 2003 .

[34]  E. Garfunkel,et al.  Oxygen exchange and transport in thin zirconia films on Si(100) , 2000 .

[35]  G. Ghidini,et al.  Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2 , 1982 .

[36]  M. Copel Selective desorption of interfacial SiO2 , 2003 .

[37]  David A. Muller,et al.  Properties of high κ gate dielectrics Gd2O3 and Y2O3 for Si , 2001 .

[38]  S. Stemmer,et al.  Electron energy-loss spectroscopy analysis of interface structure of yttrium oxide gate dielectrics on silicon , 2002 .

[39]  J. White,et al.  Interfacial silicon oxide formation during synthesis of ZrO2 on Si(100) , 2000 .

[40]  W. Johnson,et al.  Dominant moving species in the formation of amorphous NiZr by solid‐state reaction , 1985 .

[41]  G. Thomas,et al.  Zircon formation from amorphous silica and tetragonal zirconia: kinetic study and modelling , 2001 .

[42]  S. Campbell,et al.  Group IVB metal oxides high permittivity gate insulators deposited from anhydrous metal nitrates , 2001 .

[43]  D. Starodub,et al.  SILICON OXIDE DECOMPOSITION AND DESORPTION DURING THE THERMAL OXIDATION OF SILICON , 1999 .

[44]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[45]  Raghaw Rai,et al.  Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2 , 2002 .

[46]  H. Schaefer,et al.  OXYGEN DIFFUSION IN ULTRAFINE GRAINED MONOCLINIC ZRO2 , 1999 .

[47]  Ji-Cheng Zhao,et al.  Hf-Si binary phase diagram determination and thermodynamic modeling , 2000 .

[48]  J. Lettieri,et al.  Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon , 2002 .

[49]  Olivier Renault,et al.  HfO2/SiO2 interface chemistry studied by synchrotron radiation x-ray photoelectron spectroscopy , 2002 .

[50]  G. Botton,et al.  Electron energy loss spectroscopy of interfacial layer formation in Gd2O3 films deposited directly on Si(001) , 2002 .

[51]  J. Kwo,et al.  Interface reactions of high-κ Y2O3 gate oxides with Si , 2001 .

[52]  J. Park,et al.  Thermodynamic modeling of the miscibility gaps and the metastability in the R2O3–SiO2 systems (R=La, Sm, Dy, and Er) , 2001 .

[53]  Angus I. Kingon,et al.  High temperature stability in lanthanum and zirconia-based gate dielectrics , 2001 .

[54]  Gregory N. Parsons,et al.  Water absorption and interface reactivity of yttrium oxide gate dielectrics on silicon , 2002 .