RADIATION PRESSURE FROM MASSIVE STAR CLUSTERS AS A LAUNCHING MECHANISM FOR SUPER-GALACTIC WINDS

Galactic outflows of cool (∼104 K) gas are ubiquitous in local starburst galaxies and in most high-redshift galaxies. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in clusters. We show that, for L⋆ galaxies, the radiation pressure from clusters with Mcl ≳ 106 M☉ is able to expel the surrounding gas at velocities in excess of the circular velocity vc of the disk galaxy. This cool gas travels above the galactic disk before supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation and hot gas outflows from the galactic disk, which in combination drive it to distances of ∼50 kpc. Because the radiatively driven clouds grow in size as they travel, and because the hot gas is more dilute at large distance, the clouds are less subject to destruction. Therefore, unlike wind-driven clouds, radiatively driven clouds can give rise to the metal absorbers seen in quasar spectra. We identify these cluster-driven winds with large-scale galactic outflows. The maximum cluster mass in a galaxy is an increasing function of the galaxy's gas surface density, so only starburst galaxies are able to drive cold outflows. We find the critical star formation rate for launching large-scale cool outflows to be , in good agreement with observations.

[1]  B. M'enard,et al.  LOW-IONIZATION LINE EMISSION FROM A STARBURST GALAXY: A NEW PROBE OF A GALACTIC-SCALE OUTFLOW , 2010, 1008.3397.

[2]  J. Prochaska,et al.  WHAT DRIVES THE EXPANSION OF GIANT H ii REGIONS?: A STUDY OF STELLAR FEEDBACK IN 30 DORADUS , 2010, 1008.2383.

[3]  Mubdi Rahman,et al.  A NEW SAMPLE OF VERY MASSIVE STAR FORMING COMPLEXES IN THE SPITZER GLIMPSE SURVEY , 2010 .

[4]  Mubdi Rahman,et al.  Massive Star Forming Regions in the Galaxy using the Spitzer GLIMPSE Survey , 2010, 1004.3290.

[5]  A. Goodman,et al.  THE MASS–SIZE RELATION FROM CLOUDS TO CORES. II. SOLAR NEIGHBORHOOD CLOUDS , 2010, 1004.1170.

[6]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[7]  S. Falle,et al.  The Turbulent Destruction of Clouds - II. Mach Number Dependence, Mass-loss Rates, and Tail Formation , 2010, 1002.2091.

[8]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[9]  V. Wild,et al.  Probing star formation across cosmic time with absorption line systems , 2009, 0912.3263.

[10]  Xinyu Dai,et al.  ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES , 2009, 0911.2230.

[11]  R. Sutherland,et al.  STARBURST-DRIVEN GALACTIC WINDS: FILAMENT FORMATION AND EMISSION PROCESSES , 2009, 0907.4004.

[12]  E. Quataert,et al.  THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & THE EFFICIENCY OF STAR FORMATION IN GALAXIES , 2009, 0906.5358.

[13]  Mubdi Rahman,et al.  STAR FORMATION IN MASSIVE CLUSTERS VIA THE WILKINSON MICROWAVE ANISOTROPY PROBE AND THE SPITZER GLIMPSE SURVEY , 2009, 0906.1026.

[14]  J. Silk,et al.  Starburst-driven galactic outflows , 2009, 0905.0314.

[15]  Timothy M. Heckman,et al.  SUPERNOVA FEEDBACK EFFICIENCY AND MASS LOADING IN THE STARBURST AND GALACTIC SUPERWIND EXEMPLAR M82 , 2009, 0903.4175.

[16]  R. Azzollini,et al.  Radial Distribution of Near-UV Flux in Disc Galaxies in the range 0 , 2009, 0903.4140.

[17]  N. Murray,et al.  ONE-DIMENSIONAL DYNAMICAL MODELS OF THE CARINA NEBULA BUBBLE , 2008, 0812.2906.

[18]  N. Murray THE SIZES AND LUMINOSITIES OF MASSIVE STAR CLUSTERS , 2008, 0809.4320.

[19]  UCOLick,et al.  UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4 , 2008, 0804.4686.

[20]  A. Esquivel,et al.  Filaments in Galactic Winds Driven by Young Stellar Clusters , 2008, 0808.1611.

[21]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[22]  R. Sutherland,et al.  Three-Dimensional Simulations of a Starburst-driven Galactic Wind , 2008 .

[23]  J. Graham,et al.  High-resolution Infrared Spectroscopy of Winds from Super Star Clusters 1,2 , 2022 .

[24]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[25]  N. Bastian,et al.  ACS imaging of star clusters in M 51. I. Identification and radius distribution , 2007, 0704.3604.

[26]  J. Graham,et al.  Super Star Cluster Velocity Dispersions and Virial Masses in the M82 Nuclear Starburst , 2007, 0704.0478.

[27]  L. Infante,et al.  Dynamical masses of ultra-compact dwarf galaxies in Fornax , 2006, astro-ph/0612484.

[28]  S. M. Fall,et al.  Star Cluster Demographics. I. A General Framework and Application to the Antennae Galaxies , 2006, astro-ph/0611055.

[29]  R. Klein,et al.  Experiment on the Mass Stripping of an Interstellar Cloud Following Shock Passage , 2006 .

[30]  J. Brinkmann,et al.  Density profiles of galaxy groups and clusters from SDSS galaxy–galaxy weak lensing , 2006, astro-ph/0605476.

[31]  T. Heckman,et al.  The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds , 2005, astro-ph/0506645.

[32]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[33]  S. Djorgovski,et al.  The ACS Virgo Cluster Survey. VII. Resolving the Connection between Globular Clusters and Ultracompact Dwarf Galaxies , 2005, astro-ph/0503566.

[34]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[35]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[36]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[37]  Beverly J. Smith,et al.  Chandra X-Ray Imaging of the Interacting Starburst Galaxy System NGC 7714/7715: Tidal Ultraluminous X-Ray Sources, Emergent Wind, and Resolved H II Regions , 2004, astro-ph/0412039.

[38]  A. Rodríguez-González,et al.  Winds Driven by Super Star Clusters: The Self-Consistent Radiative Solution , 2004, astro-ph/0404281.

[39]  S. Larsen The structure and environment of young stellar clusters in spiral galaxies , 2003, astro-ph/0312338.

[40]  G. Tenorio-Tagle,et al.  Supergalactic Winds Driven by Multiple Super-Star Clusters , 2003, astro-ph/0307253.

[41]  R. Gruendl,et al.  Diffuse X-Ray Emission from the Quiescent Superbubble M17, the Omega Nebula , 2003, astro-ph/0302579.

[42]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[43]  M. Runacres,et al.  An XMM-Newton Observation of the Lagoon Nebula and the Very Young Open Cluster NGC 6530 , 2002 .

[44]  H. Rottgering,et al.  Evolution of clouds in radio galaxy cocoons , 2002, astro-ph/0209601.

[45]  E. Blackman,et al.  Hydrodynamic Interaction of Strong Shocks with Inhomogeneous Media. I. Adiabatic Case , 2001, astro-ph/0109282.

[46]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[47]  T. M. Bania,et al.  The Structure of Four Molecular Cloud Complexes in the BU-FCRAO Milky Way Galactic Ring Survey , 2001 .

[48]  C. Martin,et al.  Star Formation Thresholds in Galactic Disks , 2001, astro-ph/0103181.

[49]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[50]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[51]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[52]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[53]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[54]  M. Steinmetz,et al.  Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium , 1997, astro-ph/9706175.

[55]  P. Padoan,et al.  On star formation in primordial protoglobular clouds. , 1996, astro-ph/9604055.

[56]  M. Oey Stellar content of superbubble H ii regions in the large magellanic cloud , 1996 .

[57]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[58]  S. Silich,et al.  Shock-wave propagation in the nonuniform interstellar medium , 1995 .

[59]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[60]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .

[61]  S. Casertano,et al.  DECLINING ROTATION CURVES - THE END OF A CONSPIRACY , 1991 .

[62]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[63]  R. Kennicutt,et al.  Properties of H II region populations in galaxies. II. The H II region luminosity function , 1989 .

[64]  L. Bronfman,et al.  Molecular clouds in the Carina arm - The largest objects, associated regions of star formation, and the Carina arm in the Galaxy , 1988 .

[65]  R. Chevalier,et al.  Wind from a starburst galaxy nucleus , 1985, Nature.

[66]  S. Bergh,et al.  Luminosity function of the integrated magnitudes of open clusters , 1984 .

[67]  B. Lazareff,et al.  Photoionized stellar wind bubbles in a cloudy medium. , 1984 .

[68]  R. Weaver,et al.  Interstellar bubbles. II - Structure and evolution , 1977 .

[69]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[70]  E. Salpeter The Luminosity function and stellar evolution , 1955 .