Exploration of Essential Gene Functions via Titratable Promoter Alleles

[1]  D. A. Bell,et al.  Applied Statistics , 1953, Nature.

[2]  L. Hartwell,et al.  Genetic control of the cell-division cycle in yeast. I. Detection of mutants. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Hartwell,et al.  Genetic control of the cell division cycle in yeast. , 1974, Science.

[4]  J. Rine,et al.  Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step , 1984, Molecular and cellular biology.

[5]  P. Burgers,et al.  Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. , 1990, Nucleic acids research.

[6]  K. Baker,et al.  Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria , 1991, Nature.

[7]  A. Varshavsky,et al.  Heat-inducible degron: a method for constructing temperature-sensitive mutants. , 1994, Science.

[8]  A. Hinnebusch,et al.  Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA , 1994, Molecular and cellular biology.

[9]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[10]  M. Mann,et al.  The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl‐ and glutamyl‐tRNA synthetases. , 1996, The EMBO journal.

[11]  P. Cosson,et al.  Delta‐ and zeta‐COP, two coatomer subunits homologous to clathrin‐associated proteins, are involved in ER retrieval. , 1996, The EMBO journal.

[12]  M Aldea,et al.  A Set of Vectors with a Tetracycline‐Regulatable Promoter System for Modulated Gene Expression in Saccharomyces cerevisiae , 1997, Yeast.

[13]  M. Goebl,et al.  Mutational analysis of Cak1p, an essential protein kinase that regulates cell cycle progression , 1997, Molecular and General Genetics MGG.

[14]  M. Bard,et al.  Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae , 1998, Yeast.

[15]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Stevens,et al.  Multiple sorting pathways between the late Golgi and the vacuole in yeast. , 1998, Biochimica et biophysica acta.

[17]  D. Kressler,et al.  Synthetic Lethality with Conditional dbp6 Alleles Identifies Rsa1p, a Nucleoplasmic Protein Involved in the Assembly of 60S Ribosomal Subunits , 1999, Molecular and Cellular Biology.

[18]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Elizabeth A. Winzeler,et al.  Genomic profiling of drug sensitivities via induced haploinsufficiency , 1999, Nature Genetics.

[20]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[21]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[22]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[23]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[24]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J D Beggs,et al.  Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. , 2000, Genetics.

[26]  R. Lill,et al.  Maturation of cellular Fe-S proteins: an essential function of mitochondria. , 2000, Trends in biochemical sciences.

[27]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[28]  Jasper Rine,et al.  Upc2p and Ecm22p, Dual Regulators of Sterol Biosynthesis in Saccharomyces cerevisiae , 2001, Molecular and Cellular Biology.

[29]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[30]  H. Schmitt,et al.  The Coatomer-interacting Protein Dsl1p Is Required for Golgi-to-Endoplasmic Reticulum Retrieval in Yeast* , 2001, The Journal of Biological Chemistry.

[31]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[32]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Bryan A. Kraynack,et al.  Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. , 2001, Molecular biology of the cell.

[34]  T. Hughes Yeast and drug discovery , 2002, Functional & Integrative Genomics.

[35]  Lani F. Wu,et al.  Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters , 2002, Nature Genetics.

[36]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[37]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[38]  Seth Sadis,et al.  Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[40]  Ronald W. Davis,et al.  Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Mike Tyers,et al.  Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast , 2002, Science.

[42]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[43]  D. Tollervey,et al.  Ssf1p prevents premature processing of an early pre-60S ribosomal particle. , 2002, Molecular cell.

[44]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[45]  Mark D. Robinson,et al.  FunSpec: a web-based cluster interpreter for yeast , 2002, BMC Bioinformatics.

[46]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[47]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[48]  Masato T. Kanemaki,et al.  Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo , 2003, Nature.

[49]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[50]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[51]  Brian E Snydsman,et al.  Assigning function to yeast proteins by integration of technologies. , 2003, Molecular cell.

[52]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[53]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Warner,et al.  Autoregulation in the Biosynthesis of Ribosomes , 2003, Molecular and Cellular Biology.

[55]  Shin Ishii,et al.  A Bayesian missing value estimation method for gene expression profile data , 2003, Bioinform..

[56]  Brendan J. Frey,et al.  A Panoramic View of Yeast Noncoding RNA Processing , 2003, Cell.

[57]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[58]  Michael J. Osborn,et al.  Using yeast to place human genes in functional categories. , 2003, Gene.

[59]  J. de la Cruz,et al.  Has1p, a member of the DEAD‐box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae † , 2004, Molecular microbiology.

[60]  Michael I. Jordan,et al.  Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. C. Hinshaw,et al.  Discovering Modes of Action for Therapeutic Compounds Using a Genome-Wide Screen of Yeast Heterozygotes , 2004, Cell.

[62]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[63]  T. Hughes,et al.  The Specificities of Four Yeast Dihydrouridine Synthases for Cytoplasmic tRNAs*[boxs] , 2004, Journal of Biological Chemistry.

[64]  T. Hughes,et al.  High-definition macromolecular composition of yeast RNA-processing complexes. , 2004, Molecular cell.