On feasibility based bounds tightening 0

Mathematical programming problems involving nonconvexities are usually solved to optimality using a (spatial) Branch-and-Bound algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each Branch-and-Bound node naturally plays a critical role. The practically fastest box-tightening algorithm is known as FBBT (Feasibility-Based Bounds Tightening): an iterative procedure to tighten the variable ranges. Depending on the instance, FBBT may not converge finitely to its limit ranges, even in the case of linear constraints. Tolerance-based termination criteria yield finite termination, but not in worstcase polynomial-time. We model FBBT by using fixed-point equations in terms of the variable bounding box, and we treat these equations as constraints of an auxiliary mathematical program. We demonstrate that the auxiliary mathematical problem is a linear program, which can of course be solved in polynomial time. We demonstrate the usefulness of our approach by improving an existing Branch-and-Bound implementation. global optimization, MINLP, spatial Branch-and-Bound, range reduction.

[1]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[2]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[5]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[6]  L. Foulds,et al.  A bilinear approach to the pooling problem , 1992 .

[7]  Eero Hyvönen,et al.  Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach , 1992, Artif. Intell..

[8]  Boi Faltings,et al.  Arc-Consistency for Continuous Variables , 1994, Artif. Intell..

[9]  G. Ziegler Lectures on Polytopes , 1994 .

[10]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[11]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[12]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[13]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[14]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[15]  Frédéric Messine Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de problèmes avec contraintes , 1997 .

[16]  Nikolaos V. Sahinidis,et al.  A Finite Algorithm for Global Minimization of Separable Concave Programs , 1998, J. Glob. Optim..

[17]  Martin W. P. Savelsbergh,et al.  An Updated Mixed Integer Programming Library: MIPLIB 3.0 , 1998 .

[18]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[19]  R. Bixby An Updated Mixed Integer Programming Library MIPLIB , 1998 .

[20]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[21]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[22]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[23]  Hanif D. Sherali,et al.  On Finitely Terminating Branch-and-Bound Algorithms for Some Global Optimization Problems , 1999, SIAM J. Optim..

[24]  Nikolaos V. Sahinidis,et al.  Global Optimization and Constraint Satisfaction: The Branch-and-Reduce Approach , 2002, COCOS.

[25]  Yahia Lebbah,et al.  Accelerating filtering techniques for numeric CSPs , 2002, Artif. Intell..

[26]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[27]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[28]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[29]  Frédéric Messine,et al.  Deterministic global optimization using interval constraint propagation techniques , 2004, RAIRO Oper. Res..

[30]  Hermann Schichl,et al.  Interval Analysis on Directed Acyclic Graphs for Global Optimization , 2005, J. Glob. Optim..

[31]  Hoang Tuy,et al.  Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set , 2006 .

[32]  Leo Liberti,et al.  Writing Global Optimization Software , 2006 .

[33]  John N. Hooker,et al.  Integrated methods for optimization , 2011, International series in operations research and management science.

[34]  Moshe Y. Vardi,et al.  An Analysis of Slow Convergence in Interval Propagation , 2007, CP.

[35]  Steven Roman,et al.  Lattices and ordered sets , 2008 .

[36]  Leo Liberti,et al.  Reformulations in Mathematical Programming: Definitions and Systematics , 2009, RAIRO Oper. Res..

[37]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[38]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[39]  Hermann Schichl,et al.  Interval propagation and search on directed acyclic graphs for numerical constraint solving , 2009, J. Glob. Optim..

[40]  Leo Liberti,et al.  Mathematical programming based debugging , 2010, Electron. Notes Discret. Math..

[41]  Sonia Cafieri,et al.  Feasibility-Based Bounds Tightening via Fixed Points , 2010, COCOA.

[42]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[43]  Andrea Lodi,et al.  Experiments with a Feasibility Pump Approach for Nonconvex MINLPs , 2010, SEA.

[44]  Nenad Mladenovic,et al.  A Good Recipe for Solving MINLPs , 2010, Matheuristics.