Parametric Study of Proton-Exchange-Membrane Fuel Cell Cathode Using an Agglomerate Model

An agglomerate model on the cathode part of the proton-exchange-membrane fuel cell is developed. A parameter estimation scheme is imposed on the model to retrieve useful mass-transfer and electrochemical kinetics data. Experimental observations on the effects of oxidant composition and solid polymer electrolyte loadings on cell performance are qualitatively predicted using this model. This model gives the trend of polarization curve as a function of gas void fraction, and loadings of catalyst and solid polymer electrolyte within the catalyst layer. The effect of the catalyst layer thickness is simulated as a function of cell operating conditions and chemical/physical structure of the electrode. The relative effects of gas-phase mass transfer, oxygen diffusion, and proton migration in the solid polymer phase, and catalyst surface electrochemical kinetics are evaluated. The consequence of electrode structure and possible directions of electrode improvement are discussed.

[1]  Supramaniam Srinivasan,et al.  An evaluation of the macro-homogeneous and agglomerate model for oxygen reduction in PEMFCs , 1998 .

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[4]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[5]  P. Ekdunge,et al.  Modelling the PEM fuel cell cathode , 1997 .

[6]  A. J. Appleby,et al.  Design equations for optimized PEM fuel cell electrodes , 2000 .

[7]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[8]  Shimshon Gottesfeld,et al.  High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells , 1992 .

[9]  G. Squadrito,et al.  Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells , 1998 .

[10]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .

[11]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[12]  T. Springer,et al.  Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells , 1993 .

[13]  G. Lindbergh,et al.  Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode , 2003 .

[14]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[15]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[16]  Edson A. Ticianelli,et al.  Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of the electrodes , 1991 .

[17]  Z. Qi,et al.  Low Pt loading high performance cathodes for PEM fuel cells , 2003 .

[18]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[19]  Hsiao-Kuo Hsuen Mechanistic approach to performance equations for cathodes in polymer electrolyte fuel cells , 2003 .

[20]  Yong Woo Rho,et al.  Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O 2 / He , O 2 / Ar , and O 2 / N 2 Mixtures I . Experimental Analysis , 1994 .

[21]  Edson A. Ticianelli,et al.  Methods to Advance Technology of Proton Exchange Membrane Fuel Cells , 1988 .

[22]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[23]  Xianguo Li,et al.  Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell , 1999 .

[24]  Yongzhu Fu,et al.  Development of novel self-humidifying composite membranes for fuel cells , 2003 .

[25]  Sanjeev Mukerjee,et al.  Effects of Nafion impregnation on performances of PEMFC electrodes , 1998 .

[26]  Dawn Bernardi,et al.  Water‐Balance Calculations for Solid‐Polymer‐Electrolyte Fuel Cells , 1990 .