Application of Random Matrix Theory to Multivariate Statistics

This is an expository account of the edge eigenvalue distributions in random matrix theory and their application in multivariate statistics. The emphasis is on the Painlev\'e representations of these distributions.

[1]  Noureddine El Karoui On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity , 2003, math/0309355.

[2]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[3]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[4]  M. Bilodeau,et al.  Theory of multivariate statistics , 1999 .

[5]  P. Persson,et al.  Numerical Methods in Random Matrices , 2002 .

[6]  Eric M. Rains,et al.  Algebraic aspects of increasing subsequences , 1999 .

[7]  P. Zinn-Justin,et al.  On some integrals over the U(N) unitary group and their large N limit , 2003 .

[8]  Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.

[9]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[10]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[11]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[12]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[13]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[14]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[15]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[16]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[17]  Momar Dieng,et al.  Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations , 2005 .

[18]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[19]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[20]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[21]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[22]  A. G. Walker Theory of Lie Groups , 1947, Nature.

[23]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[24]  Harold Widom,et al.  On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .

[25]  P. Clarkson,et al.  A connection formula for the second Painlevé transcendent , 1988 .

[26]  T. W. Anderson An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .

[27]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[28]  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[29]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[30]  P. Forrester,et al.  Interrelationships between orthogonal, unitary and symplectic matrix ensembles , 1999, solv-int/9907008.

[31]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[32]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[33]  Alexander Its,et al.  Isomonodromic Deformations and Applications in Physics , 2002 .

[34]  Polynuclear Growth on a Flat Substrate and Edge Scaling of GOE Eigenvalues , 2004, math-ph/0402053.

[35]  Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges , 1998, cond-mat/9811142.

[36]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.