Probabilistic Approach to Inverse Problems

In ‘inverse problems’ data from indirect measurements are used to estimate unknown parameters of physical systems. Uncertain data, (possibly vague) prior information on model parameters, and a physical theory relating the model parameters to the observations are the fundamental elements of any inverse problem. Using concepts from probability theory, a consistent formulation of inverse problems can be made, and, while the most general solution of the inverse problem requires extensive use of Monte Carlo methods, special hypotheses (e.g., Gaussian uncertainties) allow, in some cases, an analytical solution to part of the problem (e.g., using the method of least squares).

[1]  R. Wiggins,et al.  The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .

[2]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[3]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[4]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[5]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[6]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[8]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[9]  V. I. Keilis-Borok,et al.  Inverse Problems of Seismology (Structural Review) , 1967 .

[10]  K. Szaniawski Two concepts of information , 1974 .

[11]  Erkki Somersalo,et al.  Linear inverse problems for generalised random variables , 1989 .

[12]  W. H. Reid,et al.  Mathematical problems in the geophysical sciences , 1971 .

[13]  J. Tamarkin Book Review: Le Problème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques , 1934 .

[14]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[15]  G. Backus,et al.  Inference from inadequate and inaccurate data, I. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Powell,et al.  Approximation theory and methods , 1984 .

[17]  G. Backus,et al.  Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .

[18]  R. Fletcher Practical Methods of Optimization , 1988 .

[19]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[20]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[21]  J. Scales,et al.  Global optimization methods for multimodal inverse problems , 1992 .

[22]  Klaus Mosegaard,et al.  Probabilistic analysis of implicit inverse problems , 1999 .

[23]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[24]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[25]  Guust Nolet,et al.  Resolution Analysis for Discrete Systems , 1978 .

[26]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[27]  H. Jeffreys,et al.  Theory of probability , 1896 .

[28]  L. E. Scales,et al.  Introduction to Non-Linear Optimization , 1985 .

[29]  David B. Snyder,et al.  Monte Carlo analysis of seismic reflections from Moho and the W reflector , 1997 .

[30]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[31]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  D. Jackson The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .

[33]  K. J. Dean Grades of membership , 1966 .

[34]  G. Nolet,et al.  A formalism for nonlinear inversion of seismic surface waves , 1986 .

[35]  L. Geiger Herdbestimmung bei Erdbeben aus den Ankunftszeiten , 1910 .

[36]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[37]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[38]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  F. Dahlen Models of the Lateral Heterogeneity of the Earth Consistent with Eigenfrequency Splitting Data , 1976 .

[40]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Frank Press,et al.  Earth models obtained by Monte Carlo inversion. , 1968 .

[42]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[43]  K. Mosegaard,et al.  Past temperatures directly from the greenland ice sheet , 1998, Science.

[44]  R. Wiggins,et al.  Monte Carlo inversion of body‐wave observations , 1969 .

[45]  J. Partington,et al.  Introduction to Functional Analysis , 1981, The Mathematical Gazette.

[46]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[47]  Keiiti Aki,et al.  Determination of three‐dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model , 1976 .

[48]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[49]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[50]  G. Nolet Partitioned waveform inversion and two‐dimensional structure under the network of autonomously recording seismographs , 1990 .

[51]  G Backus Inference from Inadequate and Inaccurate Data, II. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[52]  The Two Concepts of Information , 1967 .

[53]  A. Dziewoński,et al.  Deep origin of mid-ocean-ridge seismic velocity anomalies , 1992, Nature.

[54]  Carl Friedrich Gauss Theoria motus corporum coelestium , 1981 .

[55]  M. Jerrum The Computational Complexity of Counting , 1995 .

[56]  R. Parker Geophysical Inverse Theory , 1994 .

[57]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[58]  Genshiro Kitagawa,et al.  Selected papers of Hirotugu Akaike , 1998 .

[59]  E. Iso,et al.  Measurement Uncertainty and Probability: Guide to the Expression of Uncertainty in Measurement , 1995 .

[60]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[61]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[62]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[63]  G. Backus,et al.  Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Kaare Lund Rasmussen,et al.  A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data , 2000 .