Advanced illumination techniques for GPU-based volume raycasting

Volume raycasting techniques are important for both visual arts and visualization. They allow an efficient generation of visual effects and the visualization of scientific data obtained by tomography or numerical simulation. Thanks to their flexibility, experts agree that GPU-based raycasting is the state-of-the art technique for interactive volume rendering. It will most likely replace existing slice-based techniques in the near future. Volume rendering techniques are also effective for the direct rendering of implicit surfaces used for soft body animation and constructive solid geometry. The lecture starts off with an in-depth introduction to the concepts behind GPU-based ray-casting to provide a common base for the following parts. The focus of this course is on advanced illumination techniques which approximate the physically-based light transport more convincingly. Such techniques include interactive implementation of soft and hard shadows, ambient occlusion and simple Monte-Carlo based approaches to global illumination including translucency and scattering. With the proposed techniques, users are able to interactively create convincing images from volumetric data whose visual quality goes far beyond traditional approaches. The optical properties in participating media are defined using the phase function. Many approximations to the physically based light transport applied for rendering natural phenomena such as clouds or smoke assume a rather homogenous phase function model. For rendering volumetric scans on the other hand different phase function models are required to account for both surface-like structures and fuzzy boundaries in the data. Using volume rendering techniques, artists who create medical visualization for science magazines may now work on tomographic scans directly, without the necessity to fall back to creating polygonal models of anatomical structures.

[1]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[2]  A. James Stewart,et al.  Vicinity shading for enhanced perception of volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[3]  Irwin Edward Sobel,et al.  Camera Models and Machine Perception , 1970 .

[4]  Stefan Bruckner,et al.  Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data , 2004 .

[5]  Franklin C. Crow,et al.  Shadow algorithms for computer graphics , 1977, SIGGRAPH.

[6]  Markus Hadwiger,et al.  Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications , 2006, EuroVis.

[7]  David C. Banks,et al.  Pre-computed illumination for isosurfaces , 2006, Electronic Imaging.

[8]  Feng Qiu,et al.  GPU-based object-order ray-casting for large datasets , 2005, Fourth International Workshop on Volume Graphics, 2005..

[9]  Peter-Pike J. Sloan,et al.  Local, deformable precomputed radiance transfer , 2005, SIGGRAPH 2005.

[10]  Devendra Kalra,et al.  Guaranteed ray intersections with implicit surfaces , 1989, SIGGRAPH.

[11]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[12]  Roberto Scopigno,et al.  Multiresolution volume visualization with a texture-based octree , 2001, The Visual Computer.

[13]  Ralf Sarlette,et al.  Exploitation of human shadow perception for fast shadow rendering , 2005, APGV '05.

[14]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[15]  Ulrich Neumann,et al.  Opacity Shadow Maps , 2001, Rendering Techniques.

[16]  Anders Ynnerman,et al.  Interactive Global Light Propagation in Direct Volume Rendering using Local Piecewise Integration , 2008, VG/PBG@SIGGRAPH.

[17]  May D. Wang,et al.  Volumetric medical image compression and reconstruction for interactive visualization in surgical planning , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[18]  Jens Schneider,et al.  Compression domain volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[19]  Christof Rezk Salama,et al.  GPU-Based Monte-Carlo Volume Raycasting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[20]  Anders Ynnerman,et al.  Local Histograms for Design of Transfer Functions in Direct Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[21]  Michael Cox,et al.  Application-controlled demand paging for out-of-core visualization , 1997 .

[22]  Kenneth I. Joy,et al.  Efficient Error Calculation for Multiresolution Texture-based Volume Visualization , 2003 .

[23]  Timo Ropinski,et al.  Accelerating Volume Raycasting using Occlusion Frustums , 2008, VG/PBG@SIGGRAPH.

[24]  Stefan Bruckner,et al.  A refined data addressing and processing scheme to accelerate volume raycasting , 2004, Comput. Graph..

[25]  Anders Ynnerman,et al.  Multiresolution Interblock Interpolation in Direct Volume Rendering , 2006, EuroVis.

[26]  Marc Stamminger,et al.  Splatting indirect illumination , 2006, I3D '06.

[27]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[28]  David Salesin,et al.  Rendering antialiased shadows with depth maps , 1987, SIGGRAPH.

[29]  Steven K. Feiner,et al.  Introduction to Computer Graphics , 1993 .

[30]  Wolfgang Straßer,et al.  Advanced techniques for high-quality multi-resolution volume rendering , 2004, Comput. Graph..

[31]  Timo Ropinski,et al.  Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding , 2008, Comput. Graph. Forum.

[32]  Dietmar Saupe,et al.  Rapid High Quality Compression of Volume Data for Visualization , 2001, Comput. Graph. Forum.

[33]  Eric Penner,et al.  Isosurface Ambient Occlusion and Soft Shadows with Filterable Occlusion Maps , 2008, VG/PBG@SIGGRAPH.

[34]  Mateu Sbert,et al.  Obscurance-based Volume Rendering Framework , 2008, VG/PBG@SIGGRAPH.

[35]  Boon-Lock Yeo,et al.  Volume Rendering of DCT-Based Compressed 3D Scalar Data , 1995, IEEE Trans. Vis. Comput. Graph..

[36]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[37]  Craig Donner,et al.  Light diffusion in multi-layered translucent materials , 2005, SIGGRAPH 2005.

[38]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[39]  H. Bülthoff,et al.  Depth Discrimination from Shading under Diffuse Lighting , 2000, Perception.

[40]  Patric Ljung,et al.  Efficient Methods for Direct Volume Rendering of Large Data Sets , 2006 .

[41]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[42]  Arie E. Kaufman,et al.  Volumetric ray tracing , 1994, VVS '94.

[43]  David S. Ebert,et al.  Texturing and Modeling , 1998 .

[44]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[45]  Martin Kraus,et al.  Adaptive texture maps , 2002, HWWS '02.

[46]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[47]  Patric Ljung,et al.  Adaptive Sampling in Single Pass, GPU-based Raycasting of Multiresolution Volumes , 2006, VG@SIGGRAPH.

[48]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[49]  Rüdiger Westermann,et al.  A multiresolution framework for volume rendering , 1994, VVS '94.

[50]  Praveen Bhaniramka,et al.  OpenGL volumizer: a toolkit for high quality volume rendering of large data sets , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[51]  Charles D. Hansen,et al.  Interactive display of isosurfaces with global illumination , 2006, IEEE Transactions on Visualization and Computer Graphics.

[52]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[53]  Michael E. Goss,et al.  Opacity-weighted color interpolation for volume sampling , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[54]  Hans-Peter Seidel,et al.  Faster isosurface ray tracing using implicit KD-trees , 2005, IEEE Transactions on Visualization and Computer Graphics.

[55]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[56]  William J. Schroeder,et al.  Interactive out-of-core isosurface extraction , 1998 .

[57]  John C. Hart,et al.  GPU algorithms for radiosity and subsurface scattering , 2003, HWWS '03.

[58]  Kwan-Liu Ma,et al.  Texture hardware assisted rendering of time-varying volume data , 2001, Proceedings Visualization, 2001. VIS '01..

[59]  Kwan-Liu Ma,et al.  A Hardware-Assisted Scalable Solution for Interactive Volume Rendering of Time-Varying Data , 2002, IEEE Trans. Vis. Comput. Graph..

[60]  Insung Ihm,et al.  Wavelet‐Based 3D Compression Scheme for Interactive Visualization of Very Large Volume Data , 1999, Comput. Graph. Forum.

[61]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[62]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[63]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[64]  Hans-Peter Seidel,et al.  Realistic, hardware-accelerated shading and lighting , 1999, SIGGRAPH.

[65]  Insung Ihm,et al.  3D RGB image compression for interactive applications , 2001, TOGS.

[66]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[67]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998 .

[68]  Roger Crawfis,et al.  Shadows and Soft Shadows with Participating Media Using Splatting , 2003, IEEE Trans. Vis. Comput. Graph..

[69]  Anders Ynnerman,et al.  Full Body Virtual Autopsies using a State-of-the-art Volume Rendering Pipeline , 2006, IEEE Transactions on Visualization and Computer Graphics.

[70]  Wolfgang Straßer,et al.  Interactive rendering of large volume data sets , 2002, IEEE Visualization, 2002. VIS 2002..

[71]  Thomas Ertl,et al.  Employing Complex GPU Data Structures for the Interactive Visualization of Adaptive Mesh Refinement Data , 2006, VG@SIGGRAPH.

[72]  Philipp Slusallek,et al.  Interactive Volume Rendering with Ray Tracing , 2006, Eurographics.

[73]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[74]  Markus Hadwiger,et al.  GPU-accelerated deep shadow maps for direct volume rendering , 2006, GH '06.

[75]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[76]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[77]  Michael Wand,et al.  A hardware architecture for multi-resolution volume rendering , 2005, HWWS '05.

[78]  Bernd Hamann,et al.  Time- and Space-efficient Error Calculation for Multiresolution Direct Volume Rendering , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[79]  Jian Huang,et al.  Visibility culling for time-varying volume rendering using temporal occlusion coherence , 2004, IEEE Visualization 2004.

[80]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[81]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[82]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[83]  Markus Hadwiger,et al.  Smooth Mixed-Resolution GPU Volume Rendering , 2008, VG/PBG@SIGGRAPH.

[84]  Martin Vetterli,et al.  Perfect reconstruction FIR filter banks: some properties and factorizations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[85]  Roger Crawfis,et al.  Light propagation for mixed polygonal and volumetric data , 2005, International 2005 Computer Graphics.

[86]  Lance Williams,et al.  Casting curved shadows on curved surfaces , 1978, SIGGRAPH.

[87]  Wolfgang Straßer,et al.  Real-time decompression and visualization of animated volume data , 2001, Proceedings Visualization, 2001. VIS '01..

[88]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[89]  Jian Huang,et al.  Distributed data management for large volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[90]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[91]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[92]  Anders Ynnerman,et al.  Transfer function based adaptive decompression for volume rendering of large medical data sets , 2004 .

[93]  Jian Huang,et al.  Visibility culling using plenoptic opacity functions for large volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[94]  Peter-Pike J. Sloan,et al.  Interactive Ray Tracing for Volume Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[95]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[96]  Hans-Peter Seidel,et al.  Interactive Rendering of Translucent Objects † , 2003, Comput. Graph. Forum.

[97]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[98]  U. Behrens,et al.  Adding shadows to a texture-based volume renderer , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[99]  Anders Ynnerman,et al.  Efficient Ambient and Emissive Tissue Illumination using Local Occlusion in Multiresolution Volume Rendering , 2007, VG@Eurographics.