The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations

Abstract. This work describes the NASA Atmospheric CO2 Observations from Space (ACOS) XCO2 retrieval algorithm, and its performance on highly realistic, simulated observations. These tests, restricted to observations over land, are used to evaluate retrieval errors in the face of realistic clouds and aerosols, polarized non-Lambertian surfaces, imperfect meteorology, and uncorrelated instrument noise. We find that post-retrieval filters are essential to eliminate the poorest retrievals, which arise primarily due to imperfect cloud screening. The remaining retrievals have RMS errors of approximately 1 ppm. Modeled instrument noise, based on the Greenhouse Gases Observing SATellite (GOSAT) in-flight performance, accounts for less than half the total error in these retrievals. A small fraction of unfiltered clouds, particularly thin cirrus, lead to a small positive bias of ~0.3 ppm. Overall, systematic errors due to imperfect characterization of clouds and aerosols dominate the error budget, while errors due to other simplifying assumptions, in particular those related to the prior meteorological fields, appear small.

[1]  Cornelis V. M. van der Mee,et al.  Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere , 1983 .

[2]  Tatsuya Yokota,et al.  Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite , 2010 .

[3]  Michael Buchwitz,et al.  A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4 , 2000 .

[4]  Tatsuya Yokota,et al.  PPDF‐based method to account for atmospheric light scattering in observations of carbon dioxide from space , 2008 .

[5]  R. Ponte,et al.  Uncertainties in ECMWF Surface Pressure Fields over the Ocean in Relation to Sea Level Analysis and Modeling , 2003 .

[6]  A. Butz,et al.  Auxiliary Material for Paper 2010 GL 045896 Disentangling chlorophyll fluorescence from atmospheric scattering effects in O 2 A-band spectra of reflected sunlight , 2010 .

[7]  Rebecca Castano,et al.  A method for evaluating bias in global measurements of CO 2 total columns from space , 2011 .

[8]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[9]  Christopher W. O'Dell,et al.  Acceleration of multiple‐scattering, hyperspectral radiative transfer calculations via low‐streams interpolation , 2008 .

[10]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[11]  R. Fletcher A modified Marquardt subroutine for non-linear least squares , 1971 .

[12]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Philippe Ciais,et al.  Spaceborne remote sensing of greenhouse gas concentrations , 2010 .

[14]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[15]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[16]  G. Toon,et al.  Spaceborne measurements of atmospheric CO2 by high‐resolution NIR spectrometry of reflected sunlight: An introductory study , 2002 .

[17]  David Crisp,et al.  Comparison of Cloud-Screening Methods Applied to GOSAT Near-Infrared Spectra , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[18]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[19]  APPLICATION OF GLOBAL HIGH-RESOLUTION DEM IN THE OCO , 2008 .

[20]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[21]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[22]  P. Rayner,et al.  The utility of remotely sensed CO2 concentration data in surface source inversions , 2001 .

[23]  F. Chevallier,et al.  AIRS-based versus flask-based estimation of carbon surface fluxes , 2009 .

[24]  Ilse Aben,et al.  Evidence of systematic errors in SCIAMACHY-observed CO 2 due to aerosols , 2005 .

[25]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[26]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[27]  Scott C. Doney,et al.  Carbon source/sink information provided by column CO 2 measurements from the Orbiting Carbon Observatory , 2008 .

[28]  Thomas P. Kurosu,et al.  A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval , 2001 .

[29]  Ilse Aben,et al.  Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. , 2009, Applied optics.

[30]  S. Wofsy,et al.  Mean Ages of Stratospheric Air Derived from in Situ Observations of Co2, Ch4, and N2o , 2013 .

[31]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[32]  Tatsuya Yokota,et al.  Detection of optical path in spectroscopic space‐based observations of greenhouse gases: Application to GOSAT data processing , 2011 .

[33]  Otto P. Hasekamp,et al.  Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres , 2008 .

[34]  Shamil Maksyutov,et al.  Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models , 2011 .

[35]  M. King,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models , 2005 .

[36]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[37]  Maximilian Reuter,et al.  Corrigendum to "First direct observation of the atmospheric CO 2 year-to-year increase from space" published in Atmos. Chem. Phys., 7, 4249-4256, 2007 , 2007 .

[38]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[39]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[40]  Hidekazu Matsueda,et al.  First year of upper tropospheric integrated content of CO 2 from IASI hyperspectral infrared observations , 2009 .

[41]  W. D. Rooij,et al.  Expansion of Mie scattering matrices in generalized spherical functions , 1984 .

[42]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean , 2001 .

[43]  Hartmut Boesch,et al.  Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission , 2011, Remote. Sens..

[44]  R. Spurr,et al.  Retrieval of X CO 2 from simulated Orbiting Carbon Observatory measurements using the fast linearized R-2 OS radiative transfer model , 2008 .

[45]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[46]  Thomas S. Pagano,et al.  Satellite remote sounding of mid‐tropospheric CO2 , 2008 .

[47]  Peter J. Rayner,et al.  Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2 , 2002 .

[48]  M. Buchwitz,et al.  Space‐based near‐infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin , 2006 .

[49]  Soon-Chang Yoon,et al.  Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea , 2008 .

[50]  Hartmut Boesch,et al.  Orbiting Carbon Observatory: Inverse method and prospective error analysis , 2008 .

[51]  Hartmut Boesch,et al.  Retrieval of from simulated Orbiting Carbon Observatory measurements using the fast linearized R-2OS radiative transfer model , 2008 .

[52]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[53]  Robert J. D. Spurr,et al.  A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering–absorbing media , 2007 .

[54]  Ilse Aben,et al.  Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth's atmosphere , 2007 .

[55]  Hidekazu Matsueda,et al.  Characterization of Tropospheric Emission Spectrometer (TES) CO 2 for carbon cycle science , 2009 .

[56]  Tatsuya Yokota,et al.  An improved photon path length probability density function–based radiative transfer model for space‐based observation of greenhouse gases , 2009 .

[57]  Karen E. Cady-Pereira,et al.  Uncertainties in atmospheric surface pressure fields from global analyses , 2008 .

[58]  John Robinson,et al.  Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results , 2011 .

[59]  A. Chédin,et al.  First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical zone , 2003 .

[60]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[61]  Tatsuya Yokota,et al.  Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra , 2010 .

[62]  David R. Thompson,et al.  The ACOS X CO 2 retrieval algorithm, Part 2: Global X CO 2 data characterization , 2012 .

[63]  Maximilian Reuter,et al.  Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY , 2010 .

[64]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO) mission , 2004 .

[65]  M. Buchwitz,et al.  Space-based near-infrared CO 2 measurements : Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls , , 2006 .

[66]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[67]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[68]  Steven Pawson,et al.  Global CO2 transport simulations using meteorological data from the NASA data assimilation system , 2004 .

[69]  Michael Buchwitz,et al.  A method for improved SCIAMACHY CO 2 retrieval in the presence of optically thin clouds , 2009 .

[70]  Michael Buchwitz,et al.  First direct observation of the atmospheric CO 2 year-to-year increase from space , 2007 .

[71]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .