More comments on C p

We discuss the interpretation of C p -plots and show how they can be calibrated in several ways. We comment on the practice of using the display as a basis for formal selection of a subset-regression model, and extend the range of application of the device to encompass arbitrary linear estimates of the regression coefficients, for example Ridge estimates.

[1]  H. Theil On the Use of Incomplete Prior Information in Regression Analysis , 1963 .

[2]  H. Watts The Test-O-Gram: A Pedagogical and Presentational Device , 1965 .

[3]  M. J. Garside,et al.  The Best Sub‐Set in Multiple Regression Analysis , 1965 .

[4]  J. W. Gorman,et al.  Selection of Variables for Fitting Equations to Data , 1966 .

[5]  R. R. Hocking,et al.  Selection of the Best Subset in Regression Analysis , 1967 .

[6]  M. Kendall,et al.  The discarding of variables in multivariate analysis. , 1967, Biometrika.

[7]  Stanley L. Sclove,et al.  Improved Estimators for Coefficients in Linear Regression , 1968 .

[8]  D. Lindley The Choice of Variables in Multiple Regression , 1968 .

[9]  S. Fienberg,et al.  Efficient Calculation of All Possible Regressions , 1968 .

[10]  N. Mantel Why Stepdown Procedures in Variable Selection , 1970 .

[11]  K. Srikantan Canonical Association between Nominal Measurements , 1970 .

[12]  R. R. Hocking,et al.  Computational Efficieucy in the Selection of Regression Variables , 1970 .

[13]  W. Kennedy,et al.  Model Building for Prediction in Regression Based Upon Repeated Significance Tests , 1971 .

[14]  Robert W. Kennard,et al.  A Note on the Cp Statistic , 1971 .

[15]  D. M. Allen Mean Square Error of Prediction as a Criterion for Selecting Variables , 1971 .

[16]  G. M. Furnival All Possible Regressions with Less Computation , 1971 .

[17]  E. Spjøtvoll MULTIPLE COMPARISON OF REGRESSION FUNCTIONS. , 1972 .

[18]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .