Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution.

[1]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[2]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[3]  Jason C. Young,et al.  Hsp90: a specialized but essential protein-folding tool. , 2001, The Journal of cell biology.

[4]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[5]  Matthias Schmidt,et al.  Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression , 1996, Plant Molecular Biology.

[6]  D. Donner,et al.  The hsp90-related Protein TRAP1 Is a Mitochondrial Protein with Distinct Functional Properties* , 2000, The Journal of Biological Chemistry.

[7]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[8]  E. Craig,et al.  Heat shock proteins: molecular chaperones of protein biogenesis , 1993, Microbiological reviews.

[9]  M. Sogin,et al.  Giardia lamblia expresses a proteobacterial-like DnaK homolog. , 2001, Molecular biology and evolution.

[10]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[11]  G. Pesole,et al.  Long-branch attraction phenomenon and the impact of among-site rate variation on rodent phylogeny. , 2000, Gene.

[12]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[13]  R. Gupta,et al.  Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. , 1995, Molecular biology and evolution.

[14]  R. Gupta,et al.  Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence , 1994, Journal of bacteriology.

[15]  E. Vierling,et al.  Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Craig,et al.  Ancient heat shock gene is dispensable , 1988, Journal of bacteriology.

[17]  A. Arakaki,et al.  The chaperone connection to the origins of the eukaryotic organelles , 1994, FEBS letters.

[18]  H. Philippe,et al.  Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology , 1994 .

[20]  M. W. Gray,et al.  Evolution of organellar genomes. , 1999, Current opinion in genetics & development.

[21]  Radhey S. Gupta Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes , 1998, Microbiology and Molecular Biology Reviews.

[22]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[23]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[24]  Andrew J. Roger,et al.  A Cyanobacterial Gene in Nonphotosynthetic Protists—An Early Chloroplast Acquisition in Eukaryotes? , 2002, Current Biology.

[25]  C. Kurland,et al.  Origin and Evolution of the Mitochondrial Proteome , 2000, Microbiology and Molecular Biology Reviews.

[26]  V. Emelyanov Evolutionary relationship of Rickettsiae and mitochondria , 2001, FEBS letters.

[27]  Hervé Philippe,et al.  The origin of red algae and the evolution of chloroplasts , 2000, Nature.

[28]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[29]  Hitoshi Nakamoto,et al.  HtpG is essential for the thermal stress management in cyanobacteria , 1999, FEBS letters.

[30]  W. Martin,et al.  The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis , 1997, Current Genetics.

[31]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[32]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[33]  B. Hall,et al.  Long-branch attraction and the rDNA model of early eukaryotic evolution. , 1999, Molecular biology and evolution.