On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations

The paper deals with the use of the discontinuous Galerkin finite element method (DGFEM) for the numerical solution of viscous compressible flows. We start with a scalar convection-diffusion equation and present a discretization with the aid of the non-symmetric variant of DGFEM with interior and boundary penalty terms. We also mention some theoretical results. Then we extend the scheme to the system of the Navier-Stokes equations and discuss the treatment of stabilization terms. Several numerical examples are presented

[1]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow , 2003 .

[2]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[3]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[4]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[5]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[6]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[7]  Philippe Angot,et al.  Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .

[8]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[9]  Douglas Enright,et al.  Mathematical and computational methods for compressible flow , 2005, Math. Comput..

[10]  V. Dolejší,et al.  Numerical simulation of compressible viscous flow through cascades of profiles , 1996 .

[11]  Vít Dolejsí Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..

[12]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[13]  Gerald Warnecke,et al.  Error Estimates for a Combined Finite Volume--Finite Element Method for Nonlinear Convection--Diffusion Problems , 1999 .

[14]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[15]  George Em Karniadakis,et al.  Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .

[16]  Miloslav Feistauer,et al.  Mathematical Methods in Fluid Dynamics , 1993 .

[17]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[18]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[19]  M. Lukáčová-Medvid'ová,et al.  On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .

[20]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[21]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[22]  Jirí Felcman Grid refinement/alignment in 3D flow computations , 2003, Math. Comput. Simul..

[23]  M. Lukáčová-Medvid'ová,et al.  Combined finite element-finite volume solution of compressible flow , 1995 .