The electric image in Gnathonemus petersii

We review modelling and experimental work dealing with the mechanisms of generation of electric image. We discuss: (1) the concept of electric image in the context of the reafference principle; (2) how waveform codes an impedance related qualia of the object image, referred to as "electric colour"; (3) that some characteristics of the spatial profiles generated by pre-receptor mechanisms are suitable for edge detection; (4) which parameters of the spatial profiles provide information for distance discrimination; (5) that electric images are distributed representations of the scene.

[1]  Susumu Hagiwara,et al.  A latency-change mechanism involved in sensory coding of electric fish (mormyrids) , 1967 .

[2]  C. Bell,et al.  Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. , 1990, Journal of neurophysiology.

[3]  Angel A. Caputi,et al.  Physical basis of distance discrimination in weakly electric fish , 2000 .

[4]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[5]  K. Grant,et al.  Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe , 1997, The Journal of Neuroscience.

[6]  V. Han,et al.  Myelinated dendrites in the mormyrid electrosensory lobe , 2001, The Journal of comparative neurology.

[7]  W. Yost Auditory image perception and analysis: The basis for hearing , 1991, Hearing Research.

[8]  M. Sanders Handbook of Sensory Physiology , 1975 .

[9]  B. Rasnow,et al.  The electric organ discharges of the gymnotiform fishes: II. Eigenmannia , 1998, Journal of Comparative Physiology A.

[10]  Gerhard von der Emde,et al.  Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii , 1992, Journal of Comparative Physiology A.

[11]  S. Hagiwara,et al.  Coding mechanisms of electro-receptor fibers in some electric fish. , 1963, Journal of neurophysiology.

[12]  Angel A Caputi,et al.  Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic , 2002, Journal of Physiology-Paris.

[13]  A. Caputi,et al.  Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. , 2000, The Journal of experimental biology.

[14]  B. Rasnow,et al.  The electric organ discharges of the gymnotiform fishes: I. Apteronotus leptorhynchus , 1996, Journal of Comparative Physiology A.

[15]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[16]  Angel A. Caputi,et al.  The electric image in weakly electric fish: I. A data-based model of waveform generation inGymnotus carapo , 1995, Journal of Computational Neuroscience.

[17]  C. Bell,et al.  Sensory coding and corollary discharge effects in mormyrid electric fish. , 1989, The Journal of experimental biology.

[18]  B. Ronacher,et al.  Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a City-Block metric , 1994, Journal of Comparative Physiology A.

[19]  K. E. Machin,et al.  The Mechanism of Object Location in Gymnarchus Niloticus and Similar Fish , 1958 .

[20]  Gerhard von der Emde,et al.  Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii , 1990, Journal of Comparative Physiology A.

[21]  A. Caputi,et al.  The electric image in weakly electric fish: perception of objects of complex impedance. , 2000, The Journal of experimental biology.

[22]  K. Grant,et al.  Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology , 1996, The Journal of comparative neurology.

[23]  Christopher Assad,et al.  Electric field maps and boundary element simulations of electrolocation in weakly electric fish , 1997 .

[24]  Sheryl Coombs,et al.  Information-processing demands in electrosensory and mechanosensory lateral line systems , 2002, Journal of Physiology-Paris.

[25]  N. Hoshimiya,et al.  TheApteronotus EOD field: Waveform and EOD field simulation , 1980, Journal of comparative physiology.

[26]  B. Rasnow,et al.  The effects of simple objects on the electric field of Apteronotus , 1996, Journal of Comparative Physiology A.

[27]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[28]  A. Caputi,et al.  Electroreception in Gymnotus carapo: differences between self-generated and conspecific-generated signal carriers. , 2001, The Journal of experimental biology.

[29]  G. Emde,et al.  Imaging of Objects through active electrolocation in Gnathonemus petersii , 2002, Journal of Physiology-Paris.

[30]  Refractor Vision , 2000, The Lancet.

[31]  K. Grant,et al.  Projection neurons of the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology , 1996, The Journal of comparative neurology.

[32]  B. Rasnow,et al.  Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus leptorhynchus , 1993, Journal of Comparative Physiology A.

[33]  K. Grant,et al.  Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. , 1992, Journal of neurophysiology.

[34]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[35]  Henning Scheich,et al.  The Detection of Electric Fields from Electric Organs , 1974 .

[36]  K. Grant,et al.  Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures. , 1992, Journal of neurophysiology.

[37]  C. Bell,et al.  The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. , 1998, The Journal of experimental biology.

[38]  Ruben Budelli,et al.  Electric fish measure distance in the dark , 1998, Nature.

[39]  C. Bell,et al.  Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. , 1990, Journal of neurophysiology.

[40]  Jorge Luis Borges,et al.  Del rigor en la ciencia , 2002 .