Asymmetric K/Li-Ion Battery Based on Intercalation Selectivity

Using ab initio calculations combined with experimental confirmation, we design an asymmetric intercalation battery using K2NiFeII(CN)6 as the cathode, commercial graphite as the anode, and an organic electrolyte containing mixed lithium and potassium salts. It works by reversible K-ion intercalation at the cathode side and reversible Li-ion intercalation at the anode side simultaneously. The π-electron coordination environment in K2NiFeII(CN)6 ensures the preferred reversible intercalation of the K-ion, and the small ionic radius ensures the preferred reversible intercalation of the Li-ion in graphite. It also shows a high working voltage (∼3.6 V) and an ultralong cycling life with no capacity fading even after 5000 cycles.

[1]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[2]  Jun Liu,et al.  Rechargeable Mg–Li hybrid batteries: status and challenges , 2016 .

[3]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[4]  S. Bromley,et al.  Efficient calculation of the structural and electronic properties of mixed valence materials: application to Prussian Blue analogues , 2004 .

[5]  D. Middlemiss,et al.  First principles calculation of a large variation in dielectric tensor through the spin crossover in the CsFe[Cr(CN)₆] Prussian blue analogue. , 2014, The Journal of chemical physics.

[6]  Haoshen Zhou,et al.  Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. , 2013, Journal of the American Chemical Society.

[7]  Yuyan Shao,et al.  High performance batteries based on hybrid magnesium and lithium chemistry. , 2014, Chemical communications.

[8]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[9]  F. Illas,et al.  On the prediction of the crystal and electronic structure of mixed-valence materials by periodic density functional calculations: the case of Prussian Blue. , 2008, The Journal of chemical physics.

[10]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[11]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[12]  Muratahan Aykol,et al.  Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. , 2014, Journal of the American Chemical Society.

[13]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[14]  F. Scholz,et al.  Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions , 1996 .

[15]  Yan Yao,et al.  A magnesium-sodium hybrid battery with high operating voltage. , 2016, Chemical communications.

[16]  Yi Cui,et al.  Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials , 2015 .

[17]  Jiulin Wang,et al.  A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode. , 2016, ACS applied materials & interfaces.

[18]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[19]  Fan Zhang,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[20]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[21]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[22]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[23]  Maohua Sheng,et al.  A Novel Tin‐Graphite Dual‐Ion Battery Based on Sodium‐Ion Electrolyte with High Energy Density , 2017 .

[24]  M. Okubo,et al.  Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues AxMny[Fe(CN)6]·nH2O (A: K, Rb): Robust Frameworks for Reversible Li Storage , 2010 .

[25]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[26]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[27]  M. Kabir,et al.  Reversible mechanism for spin crossover in transition-metal cyanides , 2011 .

[28]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[29]  T. Grande,et al.  Van der Waals density functional study of the energetics of alkali metal intercalation in graphite , 2014 .

[30]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[31]  Yan Yao,et al.  High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. , 2015, ACS applied materials & interfaces.

[32]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[33]  Ya‐Xia Yin,et al.  Rechargeable dual-metal-ion batteries for advanced energy storage. , 2016, Physical chemistry chemical physics : PCCP.

[34]  Yong‐Sheng Hu,et al.  Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries , 2016 .

[35]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[36]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[37]  Chick C. Wilson,et al.  Spin crossover in the CsFe II [Cr III (CN) 6 ] Prussian blue analog: Phonons and thermodynamics from hybrid functionals , 2010 .

[38]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[39]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[40]  M. Okubo,et al.  Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries. , 2013, Dalton transactions.

[41]  D. Adair,et al.  Nickel Hexacyanoferrate Nanoparticles as a Low Cost Cathode Material for Lithium-Ion Batteries , 2015 .

[42]  Yongbing Tang,et al.  Bubble‐Sheet‐Like Interface Design with an Ultrastable Solid Electrolyte Layer for High‐Performance Dual‐Ion Batteries , 2017, Advanced materials.

[43]  Kyusung Park,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[44]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[45]  Maohua Sheng,et al.  Carbon‐Coated Porous Aluminum Foil Anode for High‐Rate, Long‐Term Cycling Stability, and High Energy Density Dual‐Ion Batteries , 2016, Advanced materials.

[46]  Wei Chen,et al.  Highly Stable Nickel Hexacyanoferrate Nanotubes for Electrically Switched Ion Exchange , 2007 .

[47]  Kang Xu,et al.  Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability , 2015 .

[48]  Abakumov,et al.  Post-print version AVPO 4 F ( A = Li , K ) : A 4 V Cathode Material for High-Power Rechargeable Batteries , 2017 .

[49]  Y. Asai,et al.  AB INITIO CALCULATIONS ON THE MECHANISM OF CHARGE TRANSFER IN CO-FE PRUSSIAN-BLUE COMPOUNDS , 1999 .

[50]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[51]  Yang Ren,et al.  A high-voltage rechargeable magnesium-sodium hybrid battery , 2017 .

[52]  H. Sakaebe,et al.  Lithium intercalation behavior of iron cyanometallates , 1999 .

[53]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .