The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo

[1]  M. O’Donnell,et al.  The replisome uses mRNA as a primer after colliding with RNA polymerase , 2008, Nature.

[2]  B. Michel,et al.  UvrD and UvrD252 Counteract RecQ, RecJ, and RecFOR in a rep Mutant of Escherichia coli , 2008, Journal of bacteriology.

[3]  Lester G. Carter,et al.  Structure of the DNA Repair Helicase XPD , 2008, Cell.

[4]  Lester G. Carter,et al.  Structure of the DNA Repair Helicase Hel308 Reveals DNA Binding and Autoinhibitory Domains* , 2008, Journal of Biological Chemistry.

[5]  O. Espéli,et al.  Chromosome Structuring Limits Genome Plasticity in Escherichia coli , 2007, PLoS genetics.

[6]  P. Noirot,et al.  Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks , 2007, The EMBO journal.

[7]  B. Michel,et al.  UvrD controls the access of recombination proteins to blocked replication forks , 2007, The EMBO journal.

[8]  V. Zakian,et al.  The yeast Pif1p DNA helicase preferentially unwinds RNA–DNA substrates , 2007, Nucleic acids research.

[9]  R. Heller,et al.  Non-replicative helicases at the replication fork. , 2007, DNA repair.

[10]  P. Pasero,et al.  Maintenance of fork integrity at damaged DNA and natural pause sites. , 2007, DNA repair.

[11]  M. Foiani,et al.  Interplay of replication checkpoints and repair proteins at stalled replication forks. , 2007, DNA repair.

[12]  R. Camerini-Otero,et al.  The DinG Protein from Escherichia coli Is a Structure-specific Helicase* , 2007, Journal of Biological Chemistry.

[13]  Melanie B. Berkmen,et al.  Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis , 2007, Proceedings of the National Academy of Sciences.

[14]  S. Mirkin,et al.  Replication Fork Stalling at Natural Impediments , 2007, Microbiology and Molecular Biology Reviews.

[15]  Anna Azvolinsky,et al.  The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. , 2006, Genes & development.

[16]  B. Michel,et al.  The Escherichia coli UvrD helicase is essential for Tus removal during recombination‐dependent replication restart from Ter sites , 2006, Molecular microbiology.

[17]  M. F. White,et al.  The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. , 2006, Molecular cell.

[18]  V. Zakian,et al.  Roles of Pif1-like helicases in the maintenance of genomic stability , 2006, Nucleic acids research.

[19]  S. Mirkin,et al.  Transcription regulatory elements are punctuation marks for DNA replication. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Heller,et al.  Unwinding of the Nascent Lagging Strand by Rep and PriA Enables the Direct Restart of Stalled Replication Forks*[boxs] , 2005, Journal of Biological Chemistry.

[21]  B. Michel,et al.  A fork‐clearing role for UvrD , 2005, Molecular microbiology.

[22]  Gordon Broderick,et al.  Localization, Annotation, and Comparison of the Escherichia coli K-12 Proteome under Two States of Growth*S , 2005, Molecular & Cellular Proteomics.

[23]  R. G. Lloyd,et al.  RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. , 2005, Molecular cell.

[24]  F. Prado,et al.  Impairment of replication fork progression mediates RNA polII transcription‐associated recombination , 2005, The EMBO journal.

[25]  S. Mirkin,et al.  Mechanisms of Transcription-Replication Collisions in Bacteria , 2005, Molecular and Cellular Biology.

[26]  F. Fabre,et al.  UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli , 2005, The EMBO journal.

[27]  R. Gourse,et al.  rRNA transcription in Escherichia coli. , 2004, Annual review of genetics.

[28]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[29]  B. Michel,et al.  Requirement for RecFOR‐mediated recombination in priA mutant , 2004, Molecular microbiology.

[30]  V. Zakian,et al.  Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities , 2004, Molecular and Cellular Biology.

[31]  J. Courcelle,et al.  RecA-dependent recovery of arrested DNA replication forks. , 2003, Annual review of genetics.

[32]  Eduardo P C Rocha,et al.  Gene essentiality determines chromosome organisation in bacteria. , 2003, Nucleic acids research.

[33]  R. Camerini-Otero,et al.  Characterization of the DNA Damage-inducible Helicase DinG from Escherichia coli* , 2003, Journal of Biological Chemistry.

[34]  Michael I. Jordan,et al.  Toward a protein profile of Escherichia coli: Comparison to its transcription profile , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Takashi Horiuchi,et al.  Transcription-dependent recombination and the role of fork collision in yeast rDNA. , 2003, Genes & development.

[36]  R. G. Lloyd,et al.  Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase , 2002, The EMBO journal.

[37]  M. Petit,et al.  Essential bacterial helicases that counteract the toxicity of recombination proteins , 2002, The EMBO journal.

[38]  Jeffrey W. Roberts,et al.  E. coli Transcription Repair Coupling Factor (Mfd Protein) Rescues Arrested Complexes by Promoting Forward Translocation , 2002, Cell.

[39]  S. Ehrlich,et al.  An expanded view of bacterial DNA replication , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Aiyar,et al.  Contributions of UP Elements and the Transcription Factor FIS to Expression from the Seven rrn P1 Promoters inEscherichia coli , 2001, Journal of bacteriology.

[41]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[42]  S. Sandler Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. , 2000, Genetics.

[43]  R. Gourse,et al.  Regulation of rRNA Transcription Is Remarkably Robust: FIS Compensates for Altered Nucleoside Triphosphate Sensing by Mutant RNA Polymerases at Escherichia coli rrn P1 Promoters , 2000, Journal of bacteriology.

[44]  S. Ehrlich,et al.  RuvAB Acts at Arrested Replication Forks , 1998, Cell.

[45]  E. Viguera,et al.  A computer model for the analysis of DNA replication intermediates by two-dimensional agarose gel electrophoresis. , 1998, Gene.

[46]  R. Gourse,et al.  RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. , 1998, Journal of molecular biology.

[47]  R. Gourse,et al.  Activation of Escherichia coli rRNA Transcription by FIS during a Growth Cycle , 1998, Journal of bacteriology.

[48]  I S Mian,et al.  The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. , 1997, Nucleic acids research.

[49]  É. Massé,et al.  DNA Topoisomerases Regulate R-loop Formation during Transcription of the rrnB Operon in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[50]  H. Ohmori,et al.  Multicopy suppressors of the cold-sensitive phenotype of the pcsA68 (dinD68) mutation in Escherichia coli , 1996, Journal of bacteriology.

[51]  C. Newlon,et al.  DNA Replication Fork Pause Sites Dependent on Transcription , 1996, Science.

[52]  C. Condon,et al.  Control of rRNA transcription in Escherichia coli. , 1995, Microbiological reviews.

[53]  B. Michel,et al.  Transcription‐induced deletions in Escherichia coli plasmids , 1995, Molecular microbiology.

[54]  A. Sancar,et al.  Mechanisms of transcription-repair coupling and mutation frequency decline. , 1994, Microbiological reviews.

[55]  F. Foury,et al.  PIF1 DNA helicase from Saccharomyces cerevisiae. Biochemical characterization of the enzyme. , 1993, The Journal of biological chemistry.

[56]  E. Koonin,et al.  Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein. , 1993, Nucleic acids research.

[57]  S. W. Matson,et al.  Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. , 1992, Nucleic acids research.

[58]  S. French,et al.  Consequences of replication fork movement through transcription units in vivo. , 1992, Science.

[59]  C. Condon,et al.  Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. , 1992, The EMBO journal.

[60]  D. Lockshon,et al.  The arrest of replication forks in the rDNA of yeast occurs independently of transcription , 1992, Cell.

[61]  K.,et al.  Isolation of DNA damage-inducible promoters in Escherichia coli: regulation of polB (dinA), dinG, and dinH by LexA repressor , 1992, Journal of bacteriology.

[62]  Jeffrey W. Roberts,et al.  Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. , 1990, Journal of molecular biology.

[63]  S. W. Matson Escherichia coli DNA helicase II (uvrD gene product) catalyzes the unwinding of DNA.RNA hybrids in vitro. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[64]  B. J. Brewer,et al.  When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome , 1988, Cell.

[65]  W. L. Fangman,et al.  The localization of replication origins on ARS plasmids in S. cerevisiae , 1987, Cell.

[66]  B. Alberts,et al.  Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule , 1983, Cell.

[67]  D. Denhardt,et al.  The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. , 1975, Journal of molecular biology.

[68]  Jeffrey H. Miller,et al.  A short course in bacterial genetics , 1992 .