Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy.

We have identified excited exciton states in monolayers of MoS2 and WS2 supported on fused silica by means of photoluminescence excitation spectroscopy. In monolayer WS2, the positions of the excited A exciton states imply an exciton binding energy of 0.32 eV. In monolayer MoS2, excited exciton transitions are observed at energies of 2.24 and 2.34 eV. Assigning these states to the B exciton Rydberg series yields an exciton binding energy of 0.44 eV.

[1]  D. Chemla,et al.  Femtosecond THz studies of intra‐excitonic transitions , 2008 .

[2]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[3]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[4]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[5]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[6]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[7]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[8]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[9]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[10]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[11]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[12]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[13]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[14]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[15]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[16]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[17]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[18]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[19]  K. Thygesen,et al.  How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2 , 2013, 1311.1384.

[20]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[21]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[22]  L. Wirtz,et al.  Effect of spin-orbit interaction on the excitonic effects in single-layer, double-layer, and bulk MoS2 , 2013, 1306.4257.

[23]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[24]  A. Neto,et al.  Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides , 2013, 1305.6672.

[25]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[26]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[27]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[28]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[29]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[30]  Lain‐Jong Li,et al.  Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition , 2013 .

[31]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[32]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[33]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[34]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[35]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[36]  P. Tan,et al.  Carrier and polarization dynamics in monolayer MoS2. , 2013, Physical review letters.

[37]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[38]  Alexey Chernikov,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .

[39]  A. Burger,et al.  Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.

[40]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[41]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[42]  Nils Scheuschner,et al.  Photoluminescence of freestanding single- and few-layerMoS2 , 2013, 1311.5824.

[43]  E. Malic,et al.  Analytical approach to excitonic properties of MoS2 , 2013, 1311.1045.

[44]  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[45]  G. Duesberg,et al.  Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry , 2014 .

[46]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[47]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[48]  C. Gies,et al.  Influence of excited carriers on the optical and electronic properties of MoS₂. , 2014, Nano letters.

[49]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[50]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[51]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[52]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[53]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[54]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[55]  T. Heinz,et al.  Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. , 2014, Nano letters.

[56]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[57]  A. MacDonald,et al.  Exciton band structure of monolayer MoS$_2$ , 2015, 1501.02273.