Number Density of Bright Lyman-Break Galaxies at z〜6 in the Subaru Deep Field

We report on the bright Lyman-break galaxies (LBGs) selected in a 767 arcmin^2 area of the Subaru Deep Field. The selection is made in the i-zR vs zB-zR plane, where zB and zR are new bandpasses with a central wavelength of 8842A and 9841A, respectively. This set of bandpasses enables us to separate well z~6 LBGs from foreground galaxies and Galactic cool stars. We detect 12 LBG candidates down to zR=25.4, and calculate the normalization of the rest-frame far-ultraviolet (FUV: 1400A) luminosity function at MFUV = -21.6 to be \phi(-21.6) = (2.6+/-0.7) x 10^{-5} mag^{-1} Mpc^{-3}. This must be the most reliable measurement ever obtained of the number density of bright z~6 LBGs, because it is more robust against both contamination and cosmic variance than previous values. The FUV luminosity density contributed from LBGs brighter than MFUV = -21.3 is (2.8+/-0.8) x 10^{24} ergs/s/Hz/Mpc^3, which is equivalent to a star formation rate density of (3.5+/-1.0) x 10^{-4} Msun/yr/Mpc^3. Combining our measurement with those at z<6 in the literature, we find that the FUV luminosity density of bright galaxies increases by an order of magnitude from z~6 to z~3 and then drops by 10^3 from z~3 to the present epoch, while the evolution of the total luminosity density is much milder. The evolutionary behavior of bright LBGs resembles that of luminous dusty star-forming galaxies and bright QSOs. The redshift of z~3 appears to be a remarkable era in the cosmic history when massive galaxies were being intensively formed.

[1]  S. Okamura,et al.  To Appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DISCOVERY OF PRIMEVAL LARGE-SCALE STRUCTURES WITH FORMING CLUSTERS AT REDSHIFT 6 1 , 2004 .

[2]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[3]  Mamoru Doi,et al.  The Subaru Deep Field: The Optical Imaging Data , 2004 .

[4]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[5]  I. Hook,et al.  Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems , 2004, astro-ph/0408367.

[6]  S. Okamura,et al.  A Strong Lyα Emitter at z = 6.33 in the Subaru Deep Field Selected as an i'-Dropout , 2004, astro-ph/0408255.

[7]  R. Windhorst,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004, astro-ph/0407493.

[8]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[9]  A. Cimatti,et al.  Old galaxies in the young Universe , 2004, Nature.

[10]  A. W. Blain,et al.  A Population of Hot, Dusty Ultraluminous Galaxies at z ≈ 2 , 2004, astro-ph/0406596.

[11]  M. Franx,et al.  Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field , 2004, astro-ph/0406562.

[12]  Patrick J. McCarthy,et al.  Hubble Space Telescope Imaging and Keck Spectroscopy of z ≈ 6 i-Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields , 2004 .

[13]  I. Smail,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 CLUSTERING OF SUBMILLIMETER-SELECTED GALAXIES , 2004 .

[14]  K. Aoki,et al.  Lyman Break Galaxies at z ~ 5: Rest-Frame Ultraviolet Spectra , 2004, astro-ph/0404227.

[15]  R. Bouwens,et al.  Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields , 2004 .

[16]  S. Okamura,et al.  Large Cosmic Variance in the Clustering Properties of Lyα Emitters at z ≃ 5 , 2004, astro-ph/0403270.

[17]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[18]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[19]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[20]  Santiago,et al.  The Cosmic Evolution of Quasar Host Galaxies , 2003, Proceedings of the International Astronomical Union.

[21]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[22]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[23]  W. Percival,et al.  The host galaxies of luminous quasars , 2003, astro-ph/0308436.

[24]  R. Bouwens,et al.  Star Formation at z ~ 6: i-Dropouts in the Advanced Camera for Surveys Guaranteed Time Observation Fields , 2003 .

[25]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[26]  Y. Mellier,et al.  The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z 3 ? , 2003, astro-ph/0306585.

[27]  R. Bouwens,et al.  Star Formation at z~6: i-dropouts in the ACS GTO fields , 2003, astro-ph/0306215.

[28]  A. Fontana,et al.  A European Southern Observatory Very Large Telescope Survey of Near-Infrared (Z ≤ 25) Selected Galaxies at Redshifts 4.5 < z < 6: Constraining the Cosmic Star Formation Rate near the Reionization Epoch , 2003 .

[29]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[30]  S. Okamura,et al.  Subaru Deep Survey. IV. Discovery of a Large-Scale Structure at Redshift ≃5 , 2003, astro-ph/0302466.

[31]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003, astro-ph/0302212.

[32]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[33]  K. Aoki,et al.  Lyman Break Galaxies at z ∼ 5: Luminosity Function , 2003, astro-ph/0301084.

[34]  P. Dokkum,et al.  The Fundamental Plane at z = 1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z > 1 , 2002, astro-ph/0210643.

[35]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[36]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[37]  V. Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[38]  M. Giavalisco,et al.  The Clustering Properties of Lyman Break Galaxies at Redshift z ~ 3 , 2001, astro-ph/0107447.

[39]  S. Okamura,et al.  Luminosity Functions of 10 Nearby Clusters of Galaxies. I. Data , 2002 .

[40]  L. Moustakas,et al.  The Masses, Ancestors, and Descendants of Extremely Red Objects: Constraints from Spatial Clustering , 2001, astro-ph/0110584.

[41]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[42]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[43]  S. Okamura,et al.  Subaru deep survey I. near-infrared observations , 2000, astro-ph/0009409.

[44]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[45]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[46]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[47]  M. Sullivan,et al.  An ultraviolet-selected galaxy redshift survey -- II. The physical nature of star formation in an enlarged sample , 1999, astro-ph/9910104.

[48]  T. Miyaji,et al.  On the relationship between galaxy formation and quasar evolution , 1999, astro-ph/9909290.

[49]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[50]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[51]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[52]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[53]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[54]  M. Dickinson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters , 1997, astro-ph/9708037.

[55]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[56]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[57]  David S. Finley,et al.  White Dwarf Standard Stars: G191-B2B, GD 71, GD 153, HZ 43 , 1995 .

[58]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[59]  R. Ellis,et al.  Precision photometry of early-type galaxies in the Coma and Virgo clusters: a test of the universality of the colour–magnitude relation – II. Analysis , 1992 .

[60]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[61]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .