Surface energy of cellulosic materials: The effect of particle morphology, particle size, and hydroxyl number

[1]  C. L. Young,et al.  Physicochemical measurement by gas chromatography , 1979 .

[2]  V. T. Forsyth,et al.  Nanostructure of cellulose microfibrils in spruce wood , 2011, Proceedings of the National Academy of Sciences.

[3]  G. Garnier,et al.  Measuring the surface energies of spherical cellulose beads by inverse gas chromatography , 1996 .

[4]  D. Gray,et al.  Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers , 1980 .

[5]  P. Deasy,et al.  Production and evaluation of size reduced grades of microcrystalline cellulose. , 2001, International journal of pharmaceutics.

[6]  D. Gardner,et al.  Drying cellulose nanofibrils: in search of a suitable method , 2012, Cellulose.

[7]  J. Balatinecz,et al.  Thermodynamics of Adsorption ofn-Alkanes on Maleated Wood Fibers by Inverse Gas Chromatography , 1997 .

[8]  D. R. Lloyd,et al.  Inverse gas chromatography : characterization of polymers and other materials , 1989 .

[9]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[10]  J. Hirvonen,et al.  Spray-dried nanofibrillar cellulose microparticles for sustained drug release. , 2012, International journal of pharmaceutics.

[11]  K. Allen Acid-base interactions: Relevance to adhesion science and technology , 1992 .

[12]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[13]  E. Papirer,et al.  Gas-solid chromatography: method of measuring surface free energy characteristics of short fibers. 2. Through retention volumes measured near zero surface coverage , 1982 .

[14]  S. Ramanaiah,et al.  Lewis acid‐base properties of cellulose acetate butyrate by inverse gas chromatography , 2011 .

[15]  G. Huber,et al.  Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. , 2011, The Journal of chemical physics.

[16]  A. Bismarck,et al.  Methods to determine surface energies of natural fibres: a review , 2007 .

[17]  Ryan Mills,et al.  Adhesion and Surface Issues in Cellulose and Nanocellulose , 2008 .

[18]  G. Buschle-Diller,et al.  Poly(L‐lysine)/microcrystalline cellulose biocomposites for porous scaffolds , 2011 .

[19]  J. Hirvonen,et al.  Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient , 2011, AAPS PharmSciTech.

[20]  Mona T. Al-Shemy,et al.  Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties , 2011 .

[21]  A. T. James,et al.  Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid , 1952 .

[22]  P. Jacob,et al.  Acid-Base Surface Energy Characterization of Microcrystalline Cellulose and Two Wood Pulp Fiber Types Using Inverse Gas Chromatography , 1994 .

[23]  G. Garnier,et al.  Measurement of the Surface Free Energy of Amorphous Cellulose by Alkane Adsorption: A Critical Evaluation of Inverse Gas Chromatography (IGC) , 1994 .

[24]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[25]  E. Csiszár,et al.  Microstructure and surface properties of fibrous and ground cellulosic substrates. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[26]  Hendrik F. Hameka,et al.  Chemistry: Fundamentals and Applications , 2001 .

[27]  A. Blayo,et al.  Surface Characterization of Polysaccharides, Lignins, Printing Ink Pigments, and Ink Fillers by Inverse Gas Chromatography , 1996 .

[28]  O. Battista Hydrolysis and Crystallization of Cellulose , 1950 .

[29]  R. Wimmer,et al.  Inverse gas chromatography for determining the dispersive surface free energy and acid–base interactions of sheet molding compound—Part II 14 Ligno-cellulosic fiber types for possible composite reinforcement , 2008 .

[30]  G. Alderborn,et al.  Particle analysis of microcrystalline cellulose: Differentiation between individual particles and their agglomerates , 1994 .

[31]  F. Fowkes ATTRACTIVE FORCES AT INTERFACES , 1964 .

[32]  Alain Dufresne,et al.  Nanocellulose: From Nature to High Performance Tailored Materials , 2012 .

[33]  D. F. Steele,et al.  Surface Energy of Microcrystalline Cellulose Determined by Capillary Intrusion and Inverse Gas Chromatography , 2008, The AAPS Journal.

[34]  J. Yliruusi,et al.  Microcrystalline cellulose and its microstructure in pharmaceutical processing. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  Viktor Gutmann,et al.  The Donor-Acceptor Approach to Molecular Interactions , 1978 .

[36]  M. H. Gil,et al.  Characterisation of the surface of a cellulosic multi-purpose office paper by inverse gas chromatography , 2001 .

[37]  H. Balard,et al.  Inverse gas chromatography investigation of the surface properties of cellulose , 2000 .

[38]  F. Fowkes Quantitative characterization of the acid-base properties of solvents, polymers, and inorganic surfaces , 1990 .

[39]  P. Ejikeme Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp , 2008 .

[40]  Z. Cai,et al.  Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. , 2013, Journal of colloid and interface science.

[41]  J. Cavaillé,et al.  Secondary dielectric relaxations in dried amorphous cellulose and dextran , 1999 .

[42]  F. Fowkes,et al.  Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers , 1990 .

[43]  L. Lavielle,et al.  The Role of the Interface in Carbon Fibre-Epoxy Composites , 1987 .

[44]  H. Lee,et al.  Analysis of the Adsorption of Alkanes on High Surface Area Cellulose by Inverse Gas Chromatography , 1993 .