Cryptic biodiversity loss linked to global climate change

Climate impacts on biodiversity are usually assessed at the morphospecies level. An analysis of the distribution and mitochondrial DNA variability of nine montane aquatic insect species in Europe suggests range contractions will be accompanied by severe loss of genetic diversity. These results imply that morphospecies-scale assessments may greatly underestimate potential biodiversity losses from climate change.

[1]  L. Bernatchez,et al.  Adaptive evolutionary conservation: towards a unified concept for defining conservation units , 2001, Molecular ecology.

[2]  J. Hughes Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams , 2007 .

[3]  Mark Vellend,et al.  Ecological consequences of genetic diversity. , 2008, Ecology letters.

[4]  T. Schmitt,et al.  Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations , 2011 .

[5]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[6]  R. Petit,et al.  Conserving biodiversity under climate change: the rear edge matters. , 2005, Ecology letters.

[7]  J. M. Scriber,et al.  Impacts of climate warming on hybrid zone movement: Geographically diffuse and biologically porous “species borders” , 2011 .

[8]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[9]  R. Shaw,et al.  Range shifts and adaptive responses to Quaternary climate change. , 2001, Science.

[10]  M. Araújo,et al.  BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .

[11]  Alfried P. Vogler,et al.  Recent advances in DNA taxonomy , 2007 .

[12]  Michael Balke,et al.  Accelerated species inventory on Madagascar using coalescent-based models of species delineation. , 2009, Systematic biology.

[13]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[14]  P. Haase,et al.  Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival , 2006, Molecular ecology.

[15]  J. Crow The genetic basis of evolutionary change , 1975 .

[16]  Chris D Thomas,et al.  Climate change and evolutionary adaptations at species' range margins. , 2011, Annual review of entomology.

[17]  P. Haase,et al.  From the Western Alps across Central Europe: Postglacial recolonisation of the tufa stream specialist Rhyacophila pubescens (Insecta, Trichoptera) , 2011, Frontiers in Zoology.

[18]  N. Stenseth,et al.  Adapting to climate change: a perspective from evolutionary physiology , 2010 .

[19]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Bryan C. Carstens,et al.  Phylogeography's past, present, and future: 10 years after Avise, 2000. , 2010, Molecular phylogenetics and evolution.

[21]  J. Franklin Moving beyond static species distribution models in support of conservation biogeography , 2010 .

[22]  P. Haase,et al.  Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios , 2011, Conservation Genetics.

[23]  R. Lewontin,et al.  The Genetic Basis of Evolutionary Change , 2022 .

[24]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[25]  T. Schmitt Molecular biogeography of Europe: Pleistocene cycles and postglacial trends , 2007, Frontiers in Zoology.

[26]  Mathieu Marmion,et al.  Evaluation of consensus methods in predictive species distribution modelling , 2009 .