PET-guided three-dimensional treatment planning of intracavitary gynecologic implants.

PURPOSE Positron emission tomography (PET) provides physiologic information that is not available from computed tomography (CT) or magnetic resonance studies. PET images may allow more accurate delineation of three-dimensional treatment planning target volumes of brachytherapy gynecologic (GYN) implants. This study evaluates the feasibility of using PET as the sole source of target, normal structure, and applicator delineation for intracavitary GYN implant treatment planning. MATERIALS AND METHODS Standard Fletcher-Suit brachytherapy tandem and colpostat applicators were used for radiation delivery. After insertion of the applicator in the operating room, the patient was taken to a PET scanner, where 555 MBq (15 mCi) 18F-fluorodeoxyglucose (18F-FDG) was administered intravenously. Forty-five minutes later, three localization tubes containing 18F-FDG were inserted into the source afterloading compartments of the tandem and colpostat. A whole-pelvis scan was performed, and the images were transferred to a commercial brachytherapy three-dimensional treatment planning system. A Foley catheter was inserted into the urinary bladder while the patient was in the operating room. The regions of radioactivity in the three applicator tube image were contoured for reconstruction of the applicator, along with the bladder, rectum, and 18F-FDG-defined target volumes. A treatment plan was generated that included dose-volume histograms and three-dimensional dose distribution displays, allowing the physician an opportunity to determine if adequate target coverage and normal-tissue sparing had been obtained. For a more conservative approach, three-dimensional dose distributions and dose-volume histograms delivered with conventional source arrangements and loading could be observed. The accuracy of applicator localization from the PET images was verified using a water phantom containing two aluminum CT-compatible tandems. The PET-defined and CT scan applicator reconstructions were compared. RESULTS Feasibility of using PET images for treatment planning of brachytherapy intracavitary GYN implants has been demonstrated. A phantom study demonstrated applicator reconstruction accuracy in the axial direction to be better than 2 mm. Reconstruction accuracy in the longitudinal direction (principally craniocaudal) was similar to the PET scanner's voxel size of 4.3 mm. CONCLUSIONS Brachytherapy intracavitary GYN implant design has traditionally been based on patient tumor staging, palpation, and clinical experience. PET images have the potential to provide better spatial information about the relationship of tumor and normal structures to the applicator. This information can be used to optimize the delivery of radiation therapy treatments. Thus far, six patients have been scanned using this process.

[1]  G. Montana,et al.  Three-dimensional applicator system for carcinoma of the uterine cervix. , 1997, International journal of radiation oncology, biology, physics.

[2]  W. Sewchand,et al.  Value of multi-planar CT images in interactive dosimetry planning of intracavitary therapy. , 1982, International journal of radiation oncology, biology, physics.

[3]  A Wambersie,et al.  Comparison of radiography- and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  P. Grigsby,et al.  Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. , 2002, International journal of radiation oncology, biology, physics.

[5]  S L Schoeppel,et al.  Magnetic resonance imaging during intracavitary gynecologic brachytherapy. , 1992, International journal of radiation oncology, biology, physics.

[6]  Brachytherapy for the next century: use of image-based treatment planning. , 1998, Radiation research.

[7]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[8]  G. Stuecklschweiger,et al.  Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CT-assisted techniques. , 1992, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[9]  S Mutic,et al.  Multimodality image registration quality assurance for conformal three-dimensional treatment planning. , 2001, International journal of radiation oncology, biology, physics.

[10]  S L Schoeppel,et al.  Three-dimensional treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. , 1994, International journal of radiation oncology, biology, physics.

[11]  A. Dixon,et al.  A CT based dosimetry system for intracavitary therapy in carcinoma of the cervix. , 1987, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  Barry A. Siegel,et al.  FDG-PET Evaluation of Carcinoma of the Cervix. , 1999, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[13]  C C Ling,et al.  CT-assisted assessment of bladder and rectum dose in gynecological implants. , 1987, International journal of radiation oncology, biology, physics.

[14]  M L Kessler,et al.  Integration of multimodality imaging data for radiotherapy treatment planning. , 1991, International journal of radiation oncology, biology, physics.

[15]  F Dehdashti,et al.  Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.