The Onsager equation for corpora

We consider extensions of excluded volume interactions for complex corpora that generalize simple rod-like particles. The Onsager equation can be defined for quite general configuration spaces, and the dimension reduction of the phase space in the limit of highly intense interaction can be shown. The formalism describes both freely articulated and interacting N-rods and the example of interacting 2-rods is given in detail.

[1]  Peter Constantin,et al.  Nonlinear Fokker-Planck Navier-Stokes systems , 2005 .

[2]  Edriss S. Titi,et al.  Remarks on a Smoluchowski equation , 2004 .

[3]  Edriss S. Titi,et al.  Dissipativity and Gevrey regularity of a Smoluchowski equation , 2005 .

[4]  Felix Otto,et al.  Continuity of Velocity Gradients in Suspensions of Rod–like Molecules , 2008 .

[5]  K. Roberts,et al.  Thesis , 2002 .

[6]  V. Slastikov,et al.  A Note on the Onsager Model of Nematic Phase Transitions , 2005 .

[7]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[8]  Qi Wang,et al.  The Weak Shear Phase Diagram for Nematic Polymers , 2004 .

[9]  J. Vukadinovic Inertial Manifolds for a Smoluchowski Equation on the Unit Sphere , 2009 .

[10]  The structure of equilibrium solutions of the one-dimensional Doi equation , 2005 .

[11]  Peter Constantin,et al.  Note on the number of steady states for a two-dimensional Smoluchowski equation , 2005 .

[12]  Pingwen Zhang,et al.  Axial Symmetry and Classification of Stationary Solutions of Doi-Onsager Equation on the Sphere with Maier-Saupe Potential , 2005, 1909.13288.

[13]  Edriss S. Titi,et al.  Asymptotic States of a Smoluchowski Equation , 2004 .

[14]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[15]  M. Gregory Forest,et al.  A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation , 2005 .

[16]  J. Vukadinovic Inertial manifolds for a Smoluchowski equation on a circle , 2008 .

[17]  Peter Constantin Smoluchowski Navier-Stokes Systems , 2007 .